Effect of Mannitol on Helicobacter pylori-Induced Cyclooxygenase-2 Expression in Gastric Epithelial AGS Cells

Pharmacology ◽  
2002 ◽  
Vol 66 (4) ◽  
pp. 182-189 ◽  
Author(s):  
Hyeyoung Kim ◽  
Jeong Yeon Seo ◽  
Kyung Hwan Kim
2001 ◽  
Vol 120 (5) ◽  
pp. A727-A727
Author(s):  
S KONTUREK ◽  
P KONTUREK ◽  
W BIELANSKI ◽  
A DUDA ◽  
M ZUCHOWICZ ◽  
...  

2014 ◽  
Vol 2014 ◽  
pp. 1-5 ◽  
Author(s):  
Liping Tao ◽  
Hai Zou ◽  
Zhimin Huang

Infection ofHelicobacter pylori (H. pylori)changed the proliferation of gastric epithelial cells and decreased the expression of heat shock protein 70 (HSP70). However, the effects ofH. pylorion the proliferation of gastric epithelial cells and the roles of HSP70 during the progress need further investigation.Objective.To investigate the effects ofHelicobacter pylori (H. pylori)and heat shock protein 70 (HSP70) on the proliferation of human gastric epithelial cells.Methods. H. pyloriand a human gastric epithelial cell line (AGS) were cocultured. The proliferation of AGS cells was quantitated by an MTT assay, and the expression of HSP70 in AGS cells was detected by Western blotting. HSP70 expression in AGS cells was silenced by small interfering RNA (siRNA) to investigate the role of HSP70. ThesiRNA-treated AGS cells were cocultured withH. pyloriand cell proliferation was measured by an MTT assay.Results.The proliferation of AGS cells was accelerated by coculturing withH. pylorifor 4 and 8 h, but was suppressed at 24 and 48 h. HSP70 expression was decreased in AGS cells infected byH. pylorifor 48 h. The proliferation in HSP70-silenced AGS cells was inhibited after coculturing withH. pylorifor 24 and 48 h compared with the control group.Conclusions.Coculture ofH. pylorialtered the proliferation of gastric epithelial cells and decreased HSP70 expression. HSP70 knockdown supplemented the inhibitory effect ofH. pylorion proliferation of epithelial cells. These results indicate that the effects ofH. pylorion the proliferation of gastric epithelial cells at least partially depend on the decreased expression of HSP70 induced by the bacterium.


2005 ◽  
Vol 12 (12) ◽  
pp. 1378-1386 ◽  
Author(s):  
Dionyssios N. Sgouras ◽  
Effrosini G. Panayotopoulou ◽  
Beatriz Martinez-Gonzalez ◽  
Kalliopi Petraki ◽  
Spyros Michopoulos ◽  
...  

ABSTRACT In clinical settings, Lactobacillus johnsonii La1 administration has been reported to have a favorable effect on Helicobacter pylori-associated gastritis, although the mechanism remains unclear. We administered, continuously through the water supply, live La1 to H. pylori-infected C57BL/6 mice and followed colonization, the development of H. pylori-associated gastritis in the lamina propria, and the levels of proinflammatory chemokines macrophage inflammatory protein 2 (MIP-2) and keratinocyte-derived cytokine (KC) in the serum and gastric tissue over a period of 3 months. We documented a significant attenuation in both lymphocytic (P = 0.038) and neutrophilic (P = 0.003) inflammatory infiltration in the lamina propria as well as in the circulating levels of anti-H. pylori immunoglobulin G antibodies (P = 0.003), although we did not observe a suppressive effect of La1 on H. pylori colonizing numbers. Other lactobacilli, such as L. amylovorus DCE 471 and L. acidophilus IBB 801, did not attenuate H. pylori-associated gastritis to the same extent. MIP-2 serum levels were distinctly reduced during the early stages of H. pylori infection in the La1-treated animals, as were gastric mucosal levels of MIP-2 and KC. Finally, we also observed a significant reduction (P = 0.046) in H. pylori-induced interleukin-8 secretion by human adenocarcinoma AGS cells in vitro in the presence of neutralized (pH 6.8) La1 spent culture supernatants, without concomitant loss of H. pylori viability. These observations suggest that during the early infection stages, administration of La1 can attenuate H. pylori-induced gastritis in vivo, possibly by reducing proinflammatory chemotactic signals responsible for the recruitment of lymphocytes and neutrophils in the lamina propria.


2004 ◽  
Vol 10 (23) ◽  
pp. 8105-8113 ◽  
Author(s):  
Ki Taek Nam ◽  
Ki-Baik Hahm ◽  
Sang-Yeon Oh ◽  
Marie Yeo ◽  
Sang-Uk Han ◽  
...  

1999 ◽  
Vol 67 (8) ◽  
pp. 4237-4242 ◽  
Author(s):  
Nicola L. Jones ◽  
Andrew S. Day ◽  
Hilary A. Jennings ◽  
Philip M. Sherman

ABSTRACT The mechanisms involved in mediating the enhanced gastric epithelial cell apoptosis observed during infection withHelicobacter pylori in vivo are unknown. To determine whether H. pylori directly induces apoptosis of gastric epithelial cells in vitro and to define the role of the Fas-Fas ligand signal transduction cascade, human gastric epithelial cells were infected with H. pylori for up to 72 h under microaerophilic conditions. As assessed by both transmission electron microscopy and fluorescence microscopy, incubation with acagA-positive, cagE-positive, VacA-positive clinical H. pylori isolate stimulated an increase in apoptosis compared to the apoptosis of untreated AGS cells (16.0% ± 2.8% versus 5.9% ± 1.4%, P < 0.05) after 72 h. In contrast, apoptosis was not detected following infection withcagA-negative, cagE-negative, VacA-negative clinical isolates or a Campylobacter jejuni strain. In addition to stimulating apoptosis, infection with H. pylorienhanced Fas receptor expression in AGS cells to a degree comparable to that of treatment with a positive control, gamma interferon (12.5 ng/ml) (148% ± 24% and 167% ± 24% of control, respectively). The enhanced Fas receptor expression was associated with increased sensitivity to Fas-mediated cell death. Ligation of the Fas receptor with an agonistic monoclonal antibody resulted in an increase in apoptosis compared to the apoptosis of cells infected with the bacterium alone (38.5% ± 7.1% versus 16.0% ± 2.8%,P < 0.05). Incubation with neutralizing anti-Fas antibody did not prevent apoptosis of H. pylori-infected cells. Taken together, these findings demonstrate that the gastric pathogen H. pylori stimulates apoptosis of gastric epithelial cells in vitro in association with the enhanced expression of the Fas receptor. These data indicate a role for Fas-mediated signaling in the programmed cell death that occurs in response toH. pylori infection.


Sign in / Sign up

Export Citation Format

Share Document