Expression Analysis of the SG-SSPN Complex in Smooth Muscle and Endothelial Cells of Human Umbilical Cord Vessels

2005 ◽  
Vol 42 (1) ◽  
pp. 1-7 ◽  
Author(s):  
I. Ramírez-Sánchez ◽  
H. Rosas-Vargas ◽  
G. Ceballos-Reyes ◽  
F. Salamanca ◽  
R.M. Coral-Vázquez
2021 ◽  
Vol 22 (2) ◽  
pp. 978
Author(s):  
Skadi Lau ◽  
Manfred Gossen ◽  
Andreas Lendlein ◽  
Friedrich Jung

Although cardiovascular devices are mostly implanted in arteries or to replace arteries, in vitro studies on implant endothelialization are commonly performed with human umbilical cord-derived venous endothelial cells (HUVEC). In light of considerable differences, both morphologically and functionally, between arterial and venous endothelial cells, we here compare HUVEC and human umbilical cord-derived arterial endothelial cells (HUAEC) regarding their equivalence as an endothelial cell in vitro model for cardiovascular research. No differences were found in either for the tested parameters. The metabolic activity and lactate dehydrogenase, an indicator for the membrane integrity, slightly decreased over seven days of cultivation upon normalization to the cell number. The amount of secreted nitrite and nitrate, as well as prostacyclin per cell, also decreased slightly over time. Thromboxane B2 was secreted in constant amounts per cell at all time points. The Von Willebrand factor remained mainly intracellularly up to seven days of cultivation. In contrast, collagen and laminin were secreted into the extracellular space with increasing cell density. Based on these results one might argue that both cell types are equally suited for cardiovascular research. However, future studies should investigate further cell functionalities, and whether arterial endothelial cells from implantation-relevant areas, such as coronary arteries in the heart, are superior to umbilical cord-derived endothelial cells.


1979 ◽  
Author(s):  
Vivian Chan ◽  
T.K. Chan

We have shown by immunofluorescent technique that the distribution of antithrombin III (ATIII) in human tissues was concentrated around the microvasculature of the lungs and kidneys, as well as veins and small arteries of other organs (liver and spleen). It would seem that ATIII is stored and/or synthesized in the endothelial cells similar to Factor VIII-RAG and Plasminogen Activator. Endothelial cells were isolated from human umbilical cord by collagenase and cultured according to Chemethod described by Shearn etal (1977). In freshly isolated endothelial cells, ATIII could be demonstrated by indirect immunof1uorescent technique and radio immunoassay confirmed the presence of 14.8 ng per 106 cells. After 7 days’ culture, the supernatant from 106 cells contained about 15 ng and the cultured cells (106) contained 16.9 ng ATIII. The presence of ATIII in cultured cells was also confirmed by the positive immunofluorescence. Hence the endothelial cells play an active role in preventing thrombosis by the synthesis and liberation of ATIII, the major natural inhibitor of the intrinsic pathway of Coagulation.Reference: Shearn S.A., Peake I.R., Ciddings J.C., Humphrys J. and Bloom A.L. Thrombosis Research, 11, 43, 1977.


Virology ◽  
2005 ◽  
Vol 342 (2) ◽  
pp. 167-176 ◽  
Author(s):  
Svetlana F. Khaiboullina ◽  
Albert A. Rizvanov ◽  
Michael R. Holbrook ◽  
Stephen St. Jeor

Sign in / Sign up

Export Citation Format

Share Document