Low- and High-Density Lipoproteins as Mitogenic Factors for Vascular Smooth Muscle Cells: Individual, Additive and Synergistic Effects

1995 ◽  
Vol 32 (5) ◽  
pp. 328-338 ◽  
Author(s):  
Thérèse J. Resink ◽  
Valery N. Bochkov ◽  
Alfred W.A. Hahn ◽  
Maria . Philippova ◽  
Fritz . Bühler ◽  
...  
2012 ◽  
Vol 27 (4) ◽  
pp. 1413-1425 ◽  
Author(s):  
Emiel P. C. Vorst ◽  
Laura Z. Vanags ◽  
Louise L. Dunn ◽  
Hamish C. Prosser ◽  
Kerry‐Anne Rye ◽  
...  

Endocrinology ◽  
2010 ◽  
Vol 151 (12) ◽  
pp. 5851-5864 ◽  
Author(s):  
Teresa Cascella ◽  
Yashwanth Radhakrishnan ◽  
Laura A. Maile ◽  
Walker H. Busby ◽  
Katherine Gollahon ◽  
...  

The IGF-I pathway and renin-angiotensin-aldosterone axis are both involved in the pathogenesis of hypertension and atherosclerosis, but no information is available about IGF-I and aldosterone interaction or their potential synergistic effects in vascular smooth muscle cells (VSMCs). The aims of this study were to investigate whether aldosterone influences IGF-I signaling and to determine the mechanism(s) by which aldosterone affects IGF-I function. Aldosterone resulted in significant increases in the Akt (1.87 ± 0.24, P < 0.001), MAPK (1.78 ± 0.13, P < 0.001), p70S6kinase (1.92 ± 0.15, P < 0.001), IGF-I receptor (1.69 ± 0.05, P < 0.01), and insulin receptor substrate-1 (1.7 ± 0.04, P < 0.01) (fold increase, mean ± SEM, n = 3) phosphorylation responses to IGF-I compared with IGF-I treatment alone. There were also significant increases in VSMC proliferation, migration, and protein synthesis (1.63 ± 0.03-, 1.56 ± 0.08-, and 1.51 ± 0.04-fold increases compared with IGF-I alone, respectively, n = 3, P < 0.001). Aldosterone induced osteopontin (OPN) mRNA expression and activation of αVβ3-integrin as well as an increase in the synthesis of IGF-I receptor. The enhancing effects of aldosterone were inhibited by eplerenone (10 μmol/liter), actinomycin-D (20 nmol/liter), and an anti-αVβ3-integrin antibody that blocks OPN binding. The antioxidant N-acetylcysteine (2 mmol/liter) completely inhibited the ability of aldosterone to induce any of these changes. In conclusion, our results show that aldosterone enhances IGF-I signaling and biological actions in VSMCs through induction of OPN followed by its subsequent activation of the αVβ3-integrin and by increasing IGF-I receptor. These changes are mediated in part through increased oxidative stress. The findings suggest a new mechanism by which aldosterone could accelerate the development of atherosclerosis.


1993 ◽  
Vol 11 (5) ◽  
pp. S110???S111 ◽  
Author(s):  
Th??r??se J. Resink ◽  
Valery N. Bochkov ◽  
Vsevolod A. Tkachuk ◽  
Fritz R. B??hler ◽  
Alfred W.A. Hahn

Sign in / Sign up

Export Citation Format

Share Document