Diurnal Patterns of Blood Sugar, Plasma Insulin, Free Fatty Acid and Triglyceride Levels in Normal Subjects and in Patients with Type IV Hyperlipoproteinemia and the Effect of Meal Frequency

1972 ◽  
Vol 14 (2) ◽  
pp. 113-126 ◽  
Author(s):  
G. Schlierf ◽  
H. Raetzer
PEDIATRICS ◽  
1966 ◽  
Vol 37 (4) ◽  
pp. 597-604
Author(s):  
Doman K. Keele ◽  
Jacob L. Kay

Simultaneous plasma free fatty acid (FFA) and blood sugar levels were determined for fasting newborn infants during the first 24 hours of life, for their cord bloods, and for their mothers at delivery. The following observations were made. In control infants the mean FFA level rose about three times the cord level after birth and was accompanied by a 25% drop in the mean blood sugar level. Thereafter, the mean blood sugar level remained relatively constant, but the mean FFA level varied from 2½ to 3 times the cord level. There was no significant correlation between the length of maternal fasting prior to delivery and the infant FFA level; there was, however a significant negative correlation between the length of maternal fasting prior to delivery and the infant blood sugar level at 24 hours of age. High FFA levels occurred in the infants of obese mothers and low levels were observed in infants with delayed respirations, in infants of preeclamptic mothers, and in infants of diabetic mothers.


1990 ◽  
Vol 259 (5) ◽  
pp. E736-E750 ◽  
Author(s):  
R. C. Bonadonna ◽  
L. C. Groop ◽  
K. Zych ◽  
M. Shank ◽  
R. A. DeFronzo

Methodology for measuring plasma free fatty acid (FFA) turnover/oxidation with [1–14C]palmitate was tested in normal subjects. In study 1, two different approaches (720-min tracer infusion without prime vs. 150-min infusion with NaH14CO3 prime) to achieve steady-state conditions of 14CO2 yielded equivalent rates of plasma FFA turnover/oxidation. In study 2, during staircase NaH14CO3 infusion, calculated rates of 14CO2 appearance agreed closely with NaH14CO3 infusion rates. In study 3, 300-min euglycemic insulin clamp documented that full biological effect of insulin on plasma FFA turnover/oxidation was established within 60–120 min. In study 4, plasma insulin concentration was raised to 14 +/- 2, 23 +/- 2, 38 +/- 2, 72 +/- 5, and 215 +/- 10 microU/ml. A dose-dependent insulin suppression of plasma FFA turnover/oxidation was observed. Plasma FFA concentration correlated positively with plasma FFA turnover/oxidation in basal and insulinized states. Total lipid oxidation (indirect calorimetry) was significantly higher than plasma FFA oxidation in the basal state, suggesting that intracellular lipid stores contributed to whole body lipid oxidation. Hepatic glucose production and total glucose disposal showed the expected dose-dependent suppression and stimulation, respectively, by insulin. In conclusion, insulin regulation of plasma FFA turnover/oxidation is maximally manifest at low physiological plasma insulin concentrations, and in the basal state a significant contribution to whole body lipid oxidation originates from lipid pool(s) that are different from plasma FFA.


1970 ◽  
Vol 23 (4) ◽  
pp. 903 ◽  
Author(s):  
JM Bassett

Intravenous infusion of 1� 5 mg adrenaline over 30 min into adult Merino wethers (50 kg body weight), increased glucose, lactate, and free fatty acid (FFA) concentrations in plasma much more than did a single rapid intravenous injection of the same amount. There was no increase in plasma insulin concentration during adrenaline infusion or after adrenaline injection.


1961 ◽  
Vol 201 (5) ◽  
pp. 815-818 ◽  
Author(s):  
John J. Spitzer ◽  
William T. McElroy

The effects of epinephrine or norepinephrine were studied in dogs receiving insulin plus glucose prior to and during administration of the amine. Epinephrine caused a significantly smaller elevation of free fatty acids (FFA) with than without insulin plus glucose administration. Blood sugar responses were quantitatively similar. Epinephrine increased both hepatic uptake of FFA and hepatic release of glucose; these changes were similar to the ones found previously in dogs not receiving insulin plus glucose. The action of norepinephrine on elevating plasma FFA was only slightly and not significantly affected by the administration of insulin plus glucose. When the order of drug administration was reversed, infusion of insulin plus glucose lowered plasma FFA levels and hepatic FFA uptake in animals already receiving either epinephrine or nonepinephrine.


1988 ◽  
Vol 254 (6) ◽  
pp. E694-E699 ◽  
Author(s):  
U. Keller ◽  
P. P. Gerber ◽  
W. Stauffacher

To investigate whether elevated plasma insulin or glucagon concentrations are capable of modifying hepatic ketogenesis independently of plasma free fatty acid (FFA) concentrations, ketone body production was determined by [3–14C]acetoacetate infusions in overnight-fasted normal subjects during exogenous supply of FFA (Intralipid and heparin infusion). When plasma FFA concentrations were elevated from 0.73 +/- 0.07 to 1.53 +/- 0.16 mmol/l during low insulin concentrations (approximately equal to 13 microU/ml) in group A (n = 7), total ketone body production increased from 3.6 +/- 0.6 to 8.2 +/- 1.0 mumol.kg-1.min-1 (P less than 0.001). When plasma FFA were similarly elevated during raised plasma insulin concentrations (approximately equal to 110 microU/ml) in group B (n = 5), total ketone body production was only 3.8 +/- 0.8 mumol.kg-1.min-1 (P less than 0.01 vs. group A). Low plasma FFA and low insulin concentrations resulted in total ketone body production of 0.70 +/- 0.18 mumol.kg-1.min-1 in group C (n = 7; P less than 0.01 vs. groups A and B). Elevation of plasma glucagon during Intralipid infusion in group D (n = 7) failed to affect ketogenesis, but the beta-hydroxybutyrate-to-acetoacetate concentration ratio decreased significantly (P less than 0.01). The data indicate that elevation of plasma insulin to high physiological concentrations restrains FFA-induced ketogenesis.


Sign in / Sign up

Export Citation Format

Share Document