The Effect of Sulphinpyrazone and Its Metabolites on Platelet Function in vitro and ex vivo

1981 ◽  
Vol 10 (3) ◽  
pp. 165-175
Author(s):  
Graham F. Pay ◽  
Robert B. Wallis ◽  
Daniela Zelaschi
Keyword(s):  
1989 ◽  
Vol 53 (6) ◽  
pp. 603-613 ◽  
Author(s):  
Bruce Lages ◽  
Harvey J. Weiss

2014 ◽  
Vol 112 (08) ◽  
pp. 412-418 ◽  
Author(s):  
Nima Vaezzadeh ◽  
Ran Ni ◽  
Paul Y. Kim ◽  
Jeffrey I. Weitz ◽  
Peter L. Gross

SummaryHaemostatic impairments are studied in vivo using one of several murine bleeding models. However it is not known whether these models are equally appropriate for assessing coagulation or platelet function defects. It was our study objective to assess the performance of arterial, venous and combined arterial and venous murine bleeding models towards impaired coagulation or platelet function. Unfractionated heparin (UFH) or αIIbβ3 inhibitory antibody (Leo.H4) were administered to mice, and their effects on bleeding in saphenous vein, artery, and tail tip transection models were quantified and correlated with their effects on plasma clotting and ADP-induced platelet aggregation, respectively. All models exhibited similar sensitivity with UFH (EC50 dose = 0.19, 0.13 and 0.07 U/g, respectively) (95% CI = 0.14 – 0.27, 0.08 – 0.20, and 0.03 – 0.16 U/g, respectively). Maximal inhibition of ex vivo plasma clotting could be achieved with UFH doses as low as 0.03 U/g. In contrast, the saphenous vein bleeding model was less sensitive to αIIbβ3 inhibition (EC50 = 6.9 µg/ml) than tail transection or saphenous artery bleeding models (EC50 = 0.12 and 0.37 µg/ml, respectively) (95% CI = 2.4 – 20, 0.05 – 0.33, and 0.06 – 2.2 µg/ml, respectively). The EC50 of Leo.H4 for ADP-induced platelet aggregation in vitro (8.0 µg/ml) was at least 20-fold higher than that of the tail and arterial, but not the venous bleeding model. In conclusion, venous, arterial and tail bleeding models are similarly affected by impaired coagulation, while platelet function defects have a greater influence in models incorporating arterial injury.


2006 ◽  
Vol 84 (3) ◽  
pp. 570-579 ◽  
Author(s):  
Niamh O’Kennedy ◽  
Lynn Crosbie ◽  
Machteld van Lieshout ◽  
John I Broom ◽  
David J Webb ◽  
...  

Blood ◽  
2015 ◽  
Vol 126 (23) ◽  
pp. 3442-3442 ◽  
Author(s):  
Reheman Adili ◽  
Theodore R Holman ◽  
Michael Holinstat

Abstract Background: Adequate platelet reactivity is required for platelet adhesion and aggregation at the site of vascular injury to maintain hemostasis. However, excessive platelet reactivity can also lead to the formation of occlusive thrombi, the predominate underlying cause of myocardial infarction and stroke. While current anti-platelet treatments limit platelet function, they often result in an increased risk of bleeding. 12-lipoxygenase (12-LOX), an oxygenase highly expressed in the platelet, has been demonstrated by our lab and others to regulate PAR4 and GPVI-mediated platelet reactivity suggesting a role of 12-LOX in regulation of vivo thrombosis. However, the ability to pharmacologically target 12-LOX in vivo has not been established to date. Aims: To determine how 12-LOX regulates thrombus formation in vivo and whether platelet 12-LOX is an effective target for anti-platelet therapeutics, wild-type (WT) or 12-LOX deficient (12-LOX-/-) mice were treated with or without the 12-LOX inhibitor, ML355, and were assessed for inhibitory effects on platelet activation in vitro, ex-vivo and in vivo. Methods: The effect of the novel 12-LOX inhibitor ML355 on human platelet function was assessed in vitro by platelet aggregometry, ex vivo by perfusion chamber. In vivo thrombus formation and vessel occlusion in small and large vessels were studied in 12-LOX-/-, WT mice and mice treated with ML355 using intravital microscopy using the FeCl3 injury models. Results: Using in vitro platelet aggregation assays, ML355 dose dependently inhibited thrombin, PAR1-AP, and PAR4-AP-induced aggregation in washed human platelets. Interestingly, the negative regulatory effects of ML355 inhibition of 12-LOX can be overcome by high concentration of thrombin. Additionally, ML355 was able to attenuate ADP-induced platelet aggregation both in platelet-rich-plasma and whole blood. In ex vivo flow chamber assays, platelet adhesion and thrombus formation on collagen-coated surfaces at high shear was attenuated in both mouse and human whole blood after incubation with ML355. Further, platelet aggregation and thrombus growth in 12-LOX-/- mice was impaired in FeCl3-induced mesenteric or carotid artery thrombosis models. Thrombi in 12-LOX-/- mice were unstable and frequently form emboli, which resulted in impaired vessel occlusion or reopening. Additionally, thrombus formation and vessel occlusion was impaired in ML355 treated WT mice. Conclusions: The highly selective 12-LOX inhibitor ML355 inhibits platelets aggregation induced by various platelet agonists and ML355 inhibition of platelet function is not agonist specific. Platelet function at high shear in ex vivo conditions in both mice and human was attenuated in the presence of ML355. Thrombus growth, stability, and vessel occlusion was impaired in mice deficient for 12-LOX. Finally, the highly selective 12-LOX inhibitor ML355 attenuates thrombus formation and prevents vessel occlusion in vivo. Our data strongly indicates 12- LOX is an important determinant of platelet reactivity and inhibition of platelet 12-LOX may represent a new target for anti-platelet therapeutics. Disclosures No relevant conflicts of interest to declare.


Cells ◽  
2021 ◽  
Vol 10 (10) ◽  
pp. 2737
Author(s):  
Benedetta Izzi ◽  
Alessandro Gialluisi ◽  
Francesco Gianfagna ◽  
Sabatino Orlandi ◽  
Amalia De Curtis ◽  
...  

Defined as an index of platelet size heterogeneity, the platelet distribution width (PDW) is still a poorly characterized marker of platelet function in (sub)clinical disease. We presently validated PDW as a marker of P-selectin dependent platelet activation in the Moli-family cohort. Platelet-bound P-selectin and platelet/leukocyte mixed aggregates were measured by flow cytometry in freshly collected venous blood, both before and after in vitro platelet activation, and coagulation time was assessed in unstimulated and LPS- or TNFα-stimulated whole blood. Closure Times (CT) were measured in a Platelet Function Analyzer (PFA)-100. Multivariable linear mixed effect regression models (with age, sex and platelet count as fixed and family structure as random effect) revealed PDW to be negatively associated with platelet P-selectin, platelet/leukocyte aggregates and von Willebrand factor (VWF), and positively with PFA-100 CT, and LPS- and TNF-α-stimulated coagulation times. With the exception of VWF, all relationships were sex-independent. In contrast, no association was found between mean platelet volume (MPV) and these variables. PDW seems a simple, useful marker of ex vivo and in vitro P-selectin dependent platelet activation. Investigations of larger cohorts will define the usefulness of PDW as a risk predictor of thrombo-inflammatory conditions where activated platelets play a contributing role.


1994 ◽  
Vol 72 (06) ◽  
pp. 912-918 ◽  
Author(s):  
M Gawaz ◽  
I Ott ◽  
A J Reininger ◽  
F-J Neumann

SummaryMagnesium deficiency and its association with platelet hyperreactivity has been well recognised in a variety of diseases including myocardial infarction, preeclampsia, and diabetes. In order to investigate potential effects of intravenous Mg2+ supplementation, platelet function was studied by measurements of in vitro bleeding time (BT) and of fibrinogen (Fg)-mediated aggregation of washed platelets. In addition, the effect of Mg2+ on platelet adhesion onto immobilised Fg, on Fg binding to activated platelets, and on surface expression of GMP-140 or GP53 was evaluated. Mg2+(4 mM) prolonged in vitro BT by 30% and inhibited Fg-mediated aggregation significantly, independent of the agonist used to initiate platelet aggregation (ADP, collagen, epinephrine, thrombin, phorbol ester). Adhesion of resting platelets to immobilised Fg was reduced by 50% in the presence of 2 mM Mg2+. Moreover, Mg2+ reduced Fg binding to ADP- or collagen-stimulated platelets as well as surface expression of GMP-140 with an IC50 of approximately 3 mM. Intravenous administration of Mg2+ to healthy volunteers inhibited both ADP-induced platelet aggregation (p <0.05) by 40% and binding of Fg or surface expression of GMP-140 by 30% (p <0.05). Thus, pharmacological concentrations of Mg2+ effectively inhibit platelet function in vitro and ex vivo.


Blood ◽  
1990 ◽  
Vol 75 (7) ◽  
pp. 1473-1480 ◽  
Author(s):  
SF Burroughs ◽  
GJ Johnson

beta-Lactam antibiotics cause platelet dysfunction with bleeding complications. Previous in vitro studies documented reversible inhibition of agonist-receptor interaction. This mechanism is inadequate to explain the effect of beta-lactam antibiotics in vivo. Platelet function does not return to normal immediately after drug treatment, implying irreversible inhibition of platelet function. We report here evidence of irreversible platelet functional and biochemical abnormalities after in vitro and in vivo exposure to beta-lactam antibiotics. Irreversible binding of [14C]-penicillin (Pen) occurred in vitro. After 24 hours' in vitro incubation with 10 to 20 mmol/L Pen, or ex vivo after antibiotic treatment, irreversible functional impairment occurred; but no irreversible inhibition of alpha 2 adrenergic receptors, measured with [3H]-yohimbine, or high-affinity thromboxane A2/prostaglandin H2 (TXA2/PGH2) receptors, measured with agonist [3H]-U46619 and antagonist [3H]-SQ29548, occurred. However, low- affinity platelet TXA2/PGH2 receptors were decreased 40% after Pen exposure in vitro or in vivo, indicating irreversible membrane alteration. Two postreceptor biochemical events were irreversibly inhibited in platelets incubated with Pen for 24 hours in vitro or ex vivo after antibiotic treatment. Thromboxane synthesis was inhibited 28.3% to 81.7%. Agonist-induced rises in cytosolic calcium ([Ca2+]i) were inhibited 40.1% to 67.5% in vitro and 26.6% to 52.2% ex vivo. Therefore, Pen binds to platelets after prolonged exposure, resulting in irreversible dysfunction attributable to inhibition of TXA2 synthesis and impairment of the rise in [Ca2+]i. The loss of low- affinity TXA2/PGH2 receptors suggests that the primary site of action of these drugs is on the platelet membrane.


2014 ◽  
Vol 17 (4) ◽  
pp. 505-511 ◽  
Author(s):  
Rosio Rodríguez-Azúa ◽  
Adriana Treuer ◽  
Rodrigo Moore-Carrasco ◽  
Daniel Cortacáns ◽  
Margarita Gutiérrez ◽  
...  

1998 ◽  
Vol 79 (02) ◽  
pp. 268-275 ◽  
Author(s):  
Anders Bröijersén ◽  
Anders Hamsten ◽  
Mats Eriksson ◽  
Bo Angelin ◽  
Paul Hjemdahl

SummaryPlatelet hyperactivity in vitro is found in patients with isolated hypercholesterolemia. It is, however, less well established if platelet activity in vivo is enhanced, and if there are differences between various types of hyperlipoproteinemia.Platelet function in vivo was studied at rest and during mental stress in men with isolated hypercholesterolemia (phenotype IIa; n = 21) or combined hyperlipidemia (phenotype IIb; n = 29), and age-matched normolipidemic controls (n = 41). The urinary excretion of 11-dehydrothromboxane B2 was elevated in patients compared to controls (IIa, p <0.05; IIb, p <0.001), and higher in type IIb than in IIa patients (p <0.05). Platelet secretion, assessed as plasma β-thromboglobulin levels, was higher in type IIb patients compared to controls (p <0.01) and type IIa patients (p <0.05) during mental stress. The urinary excretion of β-thromboglobulin was also elevated in type IIb patients compared to controls (p <0.05). Platelet aggregability at rest, as measured by filtragometry ex vivo was, however, reduced in both patient groups compared to controls (p <0.05). No correlations were found between plasma lipoprotein levels and markers of platelet function in vivo. Type IIb patients had higher plasma fibrinogen levels and higher leukocyte counts than controls (p <0.05 and p <0.001) and type IIa patients (p <0.05 and p = 0.06). Thromboxane excretion was positively related to fibrinogen levels and leukocyte counts (p <0.01 for both). Preliminary data regarding serum TNF-α also indicated an elevation of this inflammatory cytokine in type IIb patients (p <0.05 vs controls).In conclusion, thromboxane generation and platelet secretion in vivo are enhanced in patients with hypercholesterolemia, and particularly so among patients with concomitant elevation of plasma triglycerides. The mechanism is unknown, but inflammatory mediators may be involved. The present findings are of interest in relation to the role of triglycerides in coronary artery disease.


Sign in / Sign up

Export Citation Format

Share Document