Selection of Unrelated Bone Marrow Donors: Does the Current Procedure Warrant Complete MHC Class II Identity?

1992 ◽  
Vol 19 (3) ◽  
pp. 127-129
Author(s):  
T.H. Eiermann ◽  
M. Ballas ◽  
J. Fakler ◽  
C. Müller ◽  
A. Wölpl ◽  
...  
2009 ◽  
Vol 1 ◽  
pp. OED.S2813 ◽  
Author(s):  
Jared E. Knickelbein ◽  
Simon C. Watkins ◽  
Paul G. Mcmenamin ◽  
Robert L. Hendricks

The composition and location of professional antigen presenting cells (APC) varies in different mucosal surfaces. The cornea, long considered an immune-privileged tissue devoid of APCs, is now known to host a heterogeneous network of bone marrow-derived cells. Here, we utilized transgenic mice that express enhanced green fluorescent protein (EGFP) from the CD 11c promoter (pCD11c) in conjunction with immunohistochemical staining to demonstrate an interesting stratification of APCs within non-inflamed murine corneas. pCD11c+ dendritic cells (DCs) reside in the basal epithelium, seemingly embedded in the basement membrane. Most DCs express MHC class II on at least some dendrites, which extend up to 50 μm in length and traverse up 20 μm tangentially towards the apical surface of the epithelium. The DC density diminishes from peripheral to central cornea. Beneath the DCs and adjacent to the stromal side of the basement membrane reside pCD11c–CD11b+ putative macrophages that express low levels of MHC class II. Finally, MHC class II–pCD11c–CD11b+ cells form a network throughout the remainder of the stroma. This highly reproducible stratification of bone marrow-derived cells is suggestive of a progression from an APC function at the exposed corneal surface to an innate immune barrier function deeper in the stroma.


PLoS ONE ◽  
2020 ◽  
Vol 15 (5) ◽  
pp. e0233497
Author(s):  
Kai Timrott ◽  
Oliver Beetz ◽  
Felix Oldhafer ◽  
Jürgen Klempnauer ◽  
Florian W. R. Vondran ◽  
...  

2007 ◽  
Vol 35 (1) ◽  
pp. 164-170 ◽  
Author(s):  
Mark D. Jäger ◽  
Jian Y. Liu ◽  
Kai F. Timrott ◽  
Felix C. Popp ◽  
Oliver Stoeltzing ◽  
...  

Nature ◽  
1988 ◽  
Vol 336 (6198) ◽  
pp. 471-473 ◽  
Author(s):  
H. Robson MacDonald ◽  
Rosemary K. Lees ◽  
Reto Schneider ◽  
Rolf M. Zinkernagel ◽  
Hans Hengartner

2011 ◽  
Vol 39 (8) ◽  
pp. 837-849 ◽  
Author(s):  
Andrew J. Erie ◽  
Leigh Samsel ◽  
Tomoiku Takaku ◽  
Marie J. Desierto ◽  
Keyvan Keyvanfar ◽  
...  

Blood ◽  
2004 ◽  
Vol 104 (11) ◽  
pp. 251-251 ◽  
Author(s):  
Alan Hanash ◽  
Robert B. Levy

Abstract Despite the potential to cure both acquired and inherited disorders involving the hematopoietic compartment, application of allogeneic bone marrow transplantation (BMT) is limited by the frequent and severe outcome of Graft vs. Host Disease (GVHD). Unfortunately, efforts to reduce GVHD by purging the donor graft of T cells have resulted in poor engraftment and elevated disease recurrence. Alternative cell populations capable of supporting allogeneic engraftment without inducing GVHD could increase the potential for donor-recipient matching and decrease treatment associated risks. We have observed that GVHD-suppressive donor CD4+CD25+ T cells are capable of supporting allogeneic hematopoietic engraftment, as demonstrated by initial donor progenitor activity and long-term chimerism and tolerance. Using a murine MHC mismatched model transplanting 0.5–2x106 GFP+ C57BL/6 (B6) T cell-depleted bone marrow cells into 7.0 Gy sublethally irradiated BALB/c recipients, splenic CFU assessment demonstrated that co-transplantation of 1x106 B6 CD4+CD25+ T cells lead to increased donor lineage-committed GM (p<.01) and multi-potential HPP (p<.05) progenitors seven days post-BMT compared to transplantation of BM alone. Furthermore, co-transplantation of CD4+CD25+ T cells lead to lymphoid and myeloid chimerism in peripheral blood (lineage specific mean donor chimerism ± SE: B220, 67.7±15.2 vs. 0.3±0.3; CD4, 38.3±10.5 vs.0.9±0.9; CD8, 48.3±11.0 vs. 1.0±1.0; Mac-1, 58.8±16.5 vs. 0.3±0.3) and the presence of donor GM and HPP progenitors in recipient marrow two months post-BMT (mean CFU chimerism ± SE: CFU-GM, 54.5±12.8 vs. 0.0; CFU-HPP, 63.0±17.8 vs.0.0). Donor chimerism persisted six months post-BMT and was associated with tolerance to donor and host antigens by acceptance of donor and host skin grafts >50 days post-homotopic grafting. Characterization of the initial invents of engraftment support demonstrated that augmentation of donor progenitors did not require CD4+CD25+ T cell IL-10, as co-transplantation of B6-wt and B6-IL-10−/− CD4+CD25+ T cells both significantly increased total CFU-GM (mean CFU±SE: BM alone, 657.5±248.2; BM + wt, 1972±331.5; BM + IL-10−/−, 1965±401.7; both p<.05 vs. BM alone). Assessment of the antigenic requirements for activation of progenitor support demonstrated that donor CD4+CD25+ T cells did not require alloreactivity to support progenitors, as BALB/c x B6 F1 CD4+CD25+ T cells significantly increased B6 CFU-GM in BALB/c recipients (p<.001 vs. BM alone). However, B6 CD4+CD25+ T cells failed to augment C3H/HeJ CFU-GM in BALB/c recipients (p>.05 vs. BM alone), suggesting that donor CD4+CD25+ T cells might require recognition of syngeneic MHC for progenitor support. Indeed, augmentation of donor CFU-GM was abrogated when B6 CD4+CD25+ T cells were co-transplanted with B6-MHC class II−/− marrow into BALB/c recipients (p>.05 vs. BM alone). In conclusion, donor CD4+CD25+ T cells capable of promoting long-term engraftment and tolerance do not require IL-10 for support of initial donor progenitor activity, however progenitor support does require co-transplantation with syngeneic MHC class II expressing marrow. Donor CD4+CD25+ T cells may thus represent a useful alternative to unfractionated T cells for promotion of engraftment following allogeneic hematopoietic transplantation.


Blood ◽  
2000 ◽  
Vol 96 (12) ◽  
pp. 3988-3990
Author(s):  
Christiane Ody ◽  
Catherine Corbel ◽  
Dominique Dunon ◽  
Olli Vainio ◽  
Beat A. Imhof

T-cell progenitors in the embryonic bone marrow express the tyrosine kinase receptor c-kit. RR5, an anti-MHC class II β chain monoclonal antibody, subdivides this c-kit positive population. Intrathymic transfer experiments showed that most of the T-cell progenitors belong to the MHC class II+/c-kit+ bone marrow population in the embryo and young adult. On transplantation, these bone marrow progenitors lose this expression and differentiate into CD4 CD8 T lymphocytes. In contrast, erythroid progenitors are restricted to the MHC class II−/c-kit+ population. The MHC class II+/c-kit+ pro-T cells are metabolically active, because they stain brightly with rhodamin 123. Their cyclin A and B expression level suggests that they are in the mitotic phase of the cell cycle. Thus, we define an easy sorting protocol, which allows enrichment of T-cell progenitors from total bone marrow hemopoietic cells.


Sign in / Sign up

Export Citation Format

Share Document