Is Mesangial Cell Proliferation Required for Extracellular Matrix Expansion in Glomerular Disease?1

Author(s):  
Eudora Eng ◽  
J�rgen Floege ◽  
Bessie A. Young ◽  
Charles E. Alpers ◽  
William G. Couser ◽  
...  
1992 ◽  
Vol 175 (5) ◽  
pp. 1413-1416 ◽  
Author(s):  
R J Johnson ◽  
E W Raines ◽  
J Floege ◽  
A Yoshimura ◽  
P Pritzl ◽  
...  

Platelet-derived growth factor (PDGF), a potent mitogen for mesenchymal cells in culture, is expressed in vivo in a variety of inflammatory conditions associated with cell proliferation, including atherosclerosis, wound repair, pulmonary fibrosis, and glomerulonephritis. However, it is not known if PDGF mediates the fibroproliferative responses that characterize these inflammatory disorders. We administered neutralizing anti-PDGF IgG or control IgG to rats with mesangial proliferative nephritis. Inhibition of PDGF resulted in a significant reduction in mesangial cell proliferation, and largely prevented the increased deposition of extracellular matrix associated with the disease. This suggests that PDGF may have a central role in proliferative glomerular disease.


2014 ◽  
Vol 13 (1) ◽  
pp. 490-498 ◽  
Author(s):  
C.Y. Liu ◽  
L.L. Zhou ◽  
Q. Cheng ◽  
S.N. Jiang ◽  
J. Sheng ◽  
...  

2009 ◽  
Vol 297 (3) ◽  
pp. F679-F684 ◽  
Author(s):  
Mari Tomiyama-Hanayama ◽  
Hiromi Rakugi ◽  
Masaharu Kohara ◽  
Toru Mima ◽  
Yasuo Adachi ◽  
...  

Hyperlipidemia has been demonstrated to be associated with renal disease, yet the mechanism of renal injury is still poorly understood. Inflammation that occurs with the hyperlipidemia has been considered to play an important role in development of glomerular injury. In the present study, we investigated the role of interleukin-6 (IL-6), a key inflammatory molecule, on renal injury in apolipoprotein E-deficient (ApoE−/−) mice with severe hypercholesterolemia. The 6-wk-old mice were fed a high-fat diet and administered weekly rat anti-IL-6 receptor monoclonal antibody (MR16-1), control rat IgG, or saline for a total of 4 wk. We examined histopathological changes in the kidney and urinary excretion of protein and albumin. Saline- and IgG-treated mice showed remarkable proteinuria at 10 wk of age, whereas MR16-1-treated mice exhibited significantly lower levels. Renal histopathology of saline- and IgG-treated mice revealed striking lipid deposits and foam cells in the glomerular tuft, juxtaglomerular area, and arteriolar wall along with range of mesangial cell proliferation and matrix expansion. Notably, the severity of lipid deposits and mesangial cell proliferation were significantly reduced in MR16-1-treated mice. Immunohistochemistry demonstrated that mesangial IL-6 expression was dramatically reduced in MR16-1-treated mice compared with IgG-treated mice. Blocking the IL-6 receptor prevented progression of proteinuria and renal lipid deposit, as well as the mesangial cell proliferation associated with severe hyperlipoproteinemia. These results clearly demonstrate that IL-6 plays an essential role in the pathogenesis of hyperlipidemia-induced glomerular injury in ApoE−/− mice and suggests the usefulness of anti-IL-6 receptor antibody in treatments for hyperlipidemia-induced organ damage.


2014 ◽  
Vol 2014 ◽  
pp. 1-14 ◽  
Author(s):  
Chuan Lv ◽  
Can Wu ◽  
Yue-hong Zhou ◽  
Ying Shao ◽  
Guan Wang ◽  
...  

The aim of this study was to investigate whether alpha lipoic acid (LA) regulates high glucose-induced mesangial cell proliferation and extracellular matrix production via mTOR/p70S6K/4E-BP1 signaling. The effect of LA on high glucose-induced cell proliferation, fibronectin (FN), and collagen type I (collagen-I) expression and its mechanisms were examined in cultured rat mesangial cells by methylthiazol tetrazolium (MTT) assay, flow cytometry, ELISA assay, and western blot, respectively. LA at a relatively low concentration (0.25 mmol/L) acted as a growth factor in rat mesangial cells, promoted entry of cell cycle into S phase, extracellular matrix formation, and phosphorylated AKT, mTOR, p70S6K, and 4E-BP1. These effects disappeared when AKT expression was downregulated with PI3K/AKT inhibitor LY294002. Conversely, LA at a higher concentration (1.0 mmol/L) inhibited high glucose-induced rat mesangial cell proliferation, entry of cell cycle into S phase, and extracellular matrix exertion, as well as phosphorylation of mTOR, p70S6K, and 4E-BP1 but enhanced the activity of AMPK. However, these effects disappeared when AMPK activity was inhibited with CaMKK inhibitor STO-609. These results suggest that LA dose-dependently regulates mesangial cell proliferation and matrix protein secretion by mTOR/p70S6K/4E-BP1 signaling pathway under high glucose conditions.


1998 ◽  
Vol 9 (11) ◽  
pp. 2027-2039
Author(s):  
A Yoshimura ◽  
K Inui ◽  
T Nemoto ◽  
S Uda ◽  
Y Sugenoya ◽  
...  

Inhibition of 3-hydro-3-methylglutaryl coenzyme A reductase inhibits the production of mevalonate and has been shown to suppress proliferation in many cell types. Therefore, 3-hydro-3-methylglutaryl coenzyme A reductase inhibitors may have a beneficial effect in glomerular disease, because glomerular cell proliferation is a central feature in the active glomerular injury. This study examines the effect of simvastatin on glomerular pathology in a rat mesangial proliferative glomerulonephritis (GN) induced by anti-thymocyte antibody (anti-Thy 1.1 GN). There was no difference in the degree of the antibody and complement-mediated initial injuries between simvastatin-treated and control GN rats. The most pronounced feature of simvastatin-treated GN was the suppression of the early glomerular cell proliferation. The proliferative activity was maximal at day 4 after disease induction (26.5+/-7.0 of proliferating cell nuclear antigen-positive cells/glomerulus); however, approximately 70% of proliferation was suppressed by simvastatin treatment. At day 4 after disease induction, simvastatin administration also decreased alpha-smooth muscle actin expression in the glomerulus, which is a marker for mesangial cell activation. Inhibition of monocyte/macrophage recruitment into glomeruli by simvastatin was also a prominent feature. There was a 30% decrease in the number of glomerular ED-1+ cells by simvastatin treatment at day 2 after disease induction. Furthermore, simvastatin remarkably suppressed subsequent mesangial matrix expansion and type IV collagen accumulation in glomeruli. We also found that the platelet-derived growth factor expression was reduced in simvastatin-treated nephritic rats, which might simply reflect the reduction in mesangial cell proliferation and mesangial cellularity. There was no significant difference in plasma cholesterol or triglyceride levels between simvastatin- and vehicle-treated nephritic rats at day 2 and day 4, which corresponded to the times when simvastatin treatment resulted in a reduction in mesangial cell proliferation. In conclusion, this is the first report to find that mesangial cell proliferation and matrix expansion have been blocked by simvastatin in vivo. The protective effect of simvastatin in the matrix expansion in anti-Thy1.1 GN was partly by inhibition of mesangial cell proliferation and monocyte/ macrophage recruitment into glomeruli, which were independent of a change in circulating lipids.


Sign in / Sign up

Export Citation Format

Share Document