The monocyte chemotactic protein synthesis inhibitor bindarit prevents mesangial cell proliferation and extracellular matrix remodeling

2012 ◽  
Vol 66 (6) ◽  
pp. 526-535 ◽  
Author(s):  
Sara Paccosi ◽  
Claudia Musilli ◽  
Giorgina Mangano ◽  
Angelo Guglielmotti ◽  
Astrid Parenti
2014 ◽  
Vol 13 (1) ◽  
pp. 490-498 ◽  
Author(s):  
C.Y. Liu ◽  
L.L. Zhou ◽  
Q. Cheng ◽  
S.N. Jiang ◽  
J. Sheng ◽  
...  

2020 ◽  
Author(s):  
Tal M. Dankovich ◽  
Rahul Kaushik ◽  
Gabriel Cassinelli Petersen ◽  
Philipp Emanuel Giro ◽  
Hannah Abdul Hadi ◽  
...  

SummaryThe brain extracellular matrix (ECM) assembles around neurons and synapses, and is thought to change only rarely, through proteolysis and renewed protein synthesis. We report here an alternative ECM remodeling mechanism, based on the recycling of ECM molecules. We found that a key ECM protein, Tenascin-R, is frequently endocytosed, and later resurfaces, preferentially near synapses. The TNR molecules complete this cycle within ∼3 days, in an activity-dependent fashion.


2021 ◽  
Vol 11 (7) ◽  
pp. 1313-1319
Author(s):  
Zhisheng Long ◽  
Feipeng Gong ◽  
Chen Li

The present study aimed to investigate the function and mechanism of microRNA (miR)-532-3p in intervertebral disc degeneration (IDD). Further, whether miR-532-3p regulates HMGA2 in nucleus pulposus (NP) cells was explored. We collected human nucleus pulposus (NP) tissues from the patients with IDD, and detected miR-532-3p in NP tissues using RT-qPCR. MiR-532-3p mimic and inhibitor were constructed, and they were transfected into the human nucleus pulposus cells (HNPCs) by Lipofectamine 3000. MTT assay was conducted to determine cell proliferation. Cell apoptosis and extracellular matrix remodeling were examined by flow cytometric, Caspase 3/8 Assay Kits and Western blot. A dual-luciferase reporter assay was applied to investigate whether miR-532-3p targets High mobility group AT-hook 2 (HMGA2). We found miR-532-3p expression level was significantly increased in NP tissues of IDD patients, comparing with the controls. MiR-532-3p exerted an inhibitory effect on HNPCs proliferation; however, cell apoptosis and the degradation of extracellular matrix were induced by miR-532-3p. MiR-532-3p directly targets HMGA2, and HMGA2 overexpression reversed the role of miR-532-3p mimic in HNPCs proliferation, apoptosis, and extracellular matrix remodeling. Our study is the first to report that miR-532-3p might suppress NP cell proliferation, promote cell apoptosis and inhibit ECM production of NP cells via targeting HMGA2, thus facilitating the progression of IDD. MiR-532-3p was supposed to be a novel target for the treatment of IDD.


2014 ◽  
Vol 2014 ◽  
pp. 1-14 ◽  
Author(s):  
Chuan Lv ◽  
Can Wu ◽  
Yue-hong Zhou ◽  
Ying Shao ◽  
Guan Wang ◽  
...  

The aim of this study was to investigate whether alpha lipoic acid (LA) regulates high glucose-induced mesangial cell proliferation and extracellular matrix production via mTOR/p70S6K/4E-BP1 signaling. The effect of LA on high glucose-induced cell proliferation, fibronectin (FN), and collagen type I (collagen-I) expression and its mechanisms were examined in cultured rat mesangial cells by methylthiazol tetrazolium (MTT) assay, flow cytometry, ELISA assay, and western blot, respectively. LA at a relatively low concentration (0.25 mmol/L) acted as a growth factor in rat mesangial cells, promoted entry of cell cycle into S phase, extracellular matrix formation, and phosphorylated AKT, mTOR, p70S6K, and 4E-BP1. These effects disappeared when AKT expression was downregulated with PI3K/AKT inhibitor LY294002. Conversely, LA at a higher concentration (1.0 mmol/L) inhibited high glucose-induced rat mesangial cell proliferation, entry of cell cycle into S phase, and extracellular matrix exertion, as well as phosphorylation of mTOR, p70S6K, and 4E-BP1 but enhanced the activity of AMPK. However, these effects disappeared when AMPK activity was inhibited with CaMKK inhibitor STO-609. These results suggest that LA dose-dependently regulates mesangial cell proliferation and matrix protein secretion by mTOR/p70S6K/4E-BP1 signaling pathway under high glucose conditions.


Sign in / Sign up

Export Citation Format

Share Document