scholarly journals Degradation of Mcl-1 through GSK-3β Activation Regulates Apoptosis Induced by Bufalin in Non-Small Cell Lung Cancer H1975 Cells

2017 ◽  
Vol 41 (5) ◽  
pp. 2067-2076 ◽  
Author(s):  
Xiao-hong Kang ◽  
Jing-hang Zhang ◽  
Qing-qin Zhang ◽  
Yan-hui Cui ◽  
Ying Wang ◽  
...  

Background/Aims: Mcl-1, an anti-apoptotic Bcl-2 family member, is often overexpressed in non-small cell lung cancer (NSCLC). Bufalin has been reported to induce apoptosis in various tumor cells. However, there is no report showing that bufalin could downregulate Mcl-1 expression in NSCLC. Methods: Cell proliferation was analyzed by cell counting kit-8 (CCK-8) assay in H1975 cells. Cell apoptosis was detected by flow cytometry. Mcl-1 mRNA was detected by RT-PCR. The expression of apoptosis-associated proteins in H1975 cells was detected by western blotting. The levels of Mcl-1 ubiquitination and NOXA were analyzed by Immunoprecipitation assay. Results: Cell growth was inhibited by bufalin in a time and dose-dependent manner. Bufalin induced apoptosis in NSCLC cells by activating caspase cascades and downregulating Mcl-1 expression. However, overexpression of Mcl-1 diminished bufalin-induced apoptosis. Furthermore, bufalin did not reduce Mcl-1 mRNA expression in H1975 cells, but strongly promoted Mcl-1 protein degradation. Proteasome inhibitor MG132 markedly prevented the degradation of Mcl-1 and blocked bufalin-induced Mcl-1 reduction. Bufalin did not significantly affect NOXA protein levels, but downregulated the expression of p-GSK-3β. GSK-3 inhibitor and GSK-3β siRNA resulted in increased levels of Mcl-1 and reversed the bufalin-induced Mcl-1 degradation. Conclusion: Bufalin induced cell apoptosis in H1975 cells may be through downregulation of Mcl-1. Proteasomal degradation of Mcl-1 via GSK-3β activation was involved in bufalin-induced apoptosis.

2018 ◽  
Vol 24 (7) ◽  
pp. 394-399 ◽  
Author(s):  
Jiangtao Pu ◽  
Xiaojun Tang ◽  
Xiang Zhuang ◽  
Zhi Hu ◽  
Kaiming He ◽  
...  

This study mainly investigated the effects of matrine on cell apoptosis and the effects of anticancer drugs in non-small cell lung cancer (NSCLC) cell lines (A549 and LK2 cells). The results showed that matrine (≥10 μM) caused a significant inhibition on cell viability and 10 and 100 μM matrine induced cell apoptosis via influencing p53, bax, casp3, and bcl-2 expressions in A549 cells. In addition, matrine significantly down-regulated C-C chemokine receptor type 7 (CCR7) expression, and blocking the down-regulation of CCR7 by exogenous chemokine ligand 21 (CCL21) treatment alleviated matrine-caused effects of apoptosis genes in A549 cells. The results were further validated in LK2 cells that matrine regulated apoptosis gene expressions, which were reversed by CCL21 treatment. Furthermore, matrine enhances the effects of cisplatin, 5-fluorouracil, and paclitaxel in A549 cells, and the anticancer effects exhibit a dosage-dependent manner. In summary, matrine induced cell apoptosis and enhanced the effects of anticancer drugs in NSCLC cells; the mechanism might be associated with the CCR7 signal.


2021 ◽  
Vol 21 (1) ◽  
Author(s):  
Tingting Sun ◽  
Jing Chen ◽  
Xuechao Sun ◽  
Guonian Wang

Abstract Backgrounds As previously reported, midazolam anesthesia exerts tumor-suppressing effects in non-small cell lung cancer (NSCLC), but the regulating effects of this drug on cisplatin-resistance in NSCLC have not been studied. Thus, we designed this study to investigate this issue and preliminarily delineate the potential molecular mechanisms. Methods We performed MTT assay and trypan blue staining assay to measure cell proliferation and viability. Cell apoptosis was examined by FCM. qRT-PCR and immunoblotting were performed to determine the expression levels of genes. The targeting sites between genes were predicted by bioinformatics analysis and were validated by dual-luciferase reporter gene system assay. Mice tumor-bearing models were established and the tumorigenesis was evaluated by measuring tumor weight and volume. Immunohistochemistry (IHC) was used to examine the pro-proliferative Ki67 protein expressions in mice tumor tissues. Results The cisplatin-resistant NSCLC (CR-NSCLC) cells were treated with high-dose cisplatin (50 μg/ml) and low-dose midazolam (10 μg/ml), and the results showed that midazolam suppressed cell proliferation and viability, and promoted cell apoptosis in cisplatin-treated CR-NSCLC cells. In addition, midazolam enhanced cisplatin-sensitivity in CR-NSCLC cell via modulating the miR-194-5p/hook microtubule-tethering protein 3 (HOOK3) axis. Specifically, midazolam upregulated miR-194-5p, but downregulated HOOK3 in the CR-NSCLC cells, and further results validated that miR-194-5p bound to the 3’ untranslated region (3’UTR) of HOOK3 mRNA for its inhibition. Also, midazolam downregulated HOOK3 in CR-NSCLC cells by upregulating miR-194-5p. Functional experiments validated that both miR-194-5p downregulation and HOOK3 upregulation abrogated the promoting effects of midazolam on cisplatin-sensitivity in CR-NSCLC cells. Conclusions Taken together, this study found that midazolam anesthesia reduced cisplatin-resistance in CR-NSCLC cells by regulating the miR-194-5p/HOOK3 axis, implying that midazolam could be used as adjuvant drug for NSCLC treatment in clinical practices.


Cells ◽  
2021 ◽  
Vol 10 (7) ◽  
pp. 1632
Author(s):  
Alexis Rugamba ◽  
Dong Young Kang ◽  
Nipin Sp ◽  
Eun Seong Jo ◽  
Jin-Moo Lee ◽  
...  

Recently, natural compounds have been used globally for cancer treatment studies. Silibinin is a natural compound extracted from Silybum marianum (milk thistle), which has been suggested as an anticancer drug through various studies. Studies on its activity in various cancers are undergoing. This study demonstrated the molecular signaling behind the anticancer activity of silibinin in non-small cell lung cancer (NSCLC). Quantitative real-time polymerase chain reaction and Western blotting analysis were performed for molecular signaling analysis. Wound healing assay, invasion assay, and in vitro angiogenesis were performed for the anticancer activity of silibinin. The results indicated that silibinin inhibited A549, H292, and H460 cell proliferation in a concentration-dependent manner, as confirmed by the induction of G0/G1 cell cycle arrest and apoptosis and the inhibition of tumor angiogenesis, migration, and invasion. This study also assessed the role of silibinin in suppressing tumorsphere formation using the tumorsphere formation assay. By binding to the epidermal growth factor receptor (EGFR), silibinin downregulated phosphorylated EGFR expression, which then inhibited its downstream targets, the JAK2/STAT5 and PI3K/AKT pathways, and thereby reduced matrix metalloproteinase, PD-L1, and vascular endothelial growth factor expression. Binding analysis demonstrated that STAT5 binds to the PD-L1 promoter region in the nucleus and silibinin inhibited the STAT5/PD-L1 complex. Altogether, silibinin could be considered as a candidate for tumor immunotherapy and cancer stem cell-targeted therapy.


Biology ◽  
2021 ◽  
Vol 10 (6) ◽  
pp. 502
Author(s):  
David Dora ◽  
Christopher Rivard ◽  
Hui Yu ◽  
Shivaun Lueke Pickard ◽  
Viktoria Laszlo ◽  
...  

This study aims to characterize tumor-infiltrating macrophages (TAMs), myeloid-derived suppressor cells (MDSC), and the related molecular milieu regulating anti-tumor immunity in limited-stage neuroendocrine (NE)-high and NE-low small cell lung cancer. Primary tumors and matched lymph node (LN) metastases of 32 resected, early-stage SCLC patients were analyzed by immunohistochemistry (IHC) with antibodies against pan-macrophage marker CD68, M2-macrophage marker CD163, and MDSC marker CD33. Area-adjusted cell counting on TMAs showed that TAMs are the most abundant cell type in the TME, and their number in tumor nests exceeds the number of CD3 + T-cells (64% vs. 38% in NE-low and 71% vs. 18% in NE-high). Furthermore, the ratio of CD163-expressing M2-polarized TAMs in tumor nests was significantly higher in NE-low vs. NE-high tumors (70% vs. 31%). TAM density shows a strong positive correlation with CD45 and CD3 in tumor nests, but not in the stroma. fGSEA analysis on a targeted RNAseq oncological panel of 2560 genes showed that NE-high tumors exhibited increased enrichment in pathways related to cell proliferation, whereas in NE-low tumors, immune response pathways were significantly upregulated. Interestingly, we identified a subset of NE-high tumors representing an immune-oasis phenotype, but with a different gene expression profile compared to NE-low tumors. In contrast, we found that a limited subgroup of NE-low tumors is immune-deserted and express distinct cellular pathways from NE-high tumors. Furthermore, we identified potential molecular targets based on our expression data in NE-low and immune-oasis tumor subsets, including CD70, ANXA1, ITGB6, TP63, IFI27, YBX3 and CXCR2.


2021 ◽  
Vol 11 (7) ◽  
pp. 1388-1393
Author(s):  
Caihong Wei ◽  
Dan Guo ◽  
Huayun Pu

MicroRNA (miRNA) participates in cellular activities. This article mainly discusses whether miR-451 has a role in the apoptosis of non-small cell lung cancer (NSCLC) cells. A549 cell was divided into blank group, miR-451 overexpression group and NC group followed by analysis of level of miR-451, MIF mRNA, MIF, NF-κB, and nuclear expression of NF-κB by immunofluorescence, clone formation, cell apoptosis rate and cell cycle. miR-451 overexpression significantly inhibited MIF and NF-κB expression. In the case of miR-451 overexpression, NSCLC clone formation was inhibited time-dependently The nuclear NF-κB expression in miR451 group was significantly inhibited, indicating inhibition of MIF by miR-451, leading to inhibition of NSCLC cell proliferation. Further results showed that cell apoptotic rate of miR-451 high expression group was elevated with increased cell number in G2 phase, confirming that miR-451 overexpression promoted NSCLC cell apoptosis. miR-451 over-expression can inhibit MIF level by inhibiting NF-κB signaling pathway, thereby promoting NSCLC cell apoptosis, providing a new therapeutic approach for the clinical targeted therapy.


2018 ◽  
Vol 51 (6) ◽  
pp. 2938-2954 ◽  
Author(s):  
Jing Shen ◽  
Shoubo Cao ◽  
Xin Sun ◽  
Bo Pan ◽  
Jingyan Cao ◽  
...  

Background/Aims: Sonodynamic therapy (SDT) is expected to be a new method to solve the clinical problems caused by advanced metastasis in patients with lung cancer. The use of ultrasound has the advantage of being noninvasive, with deep-penetration properties. This study explored the anti-tumor effect of SDT with a new sonosensitizer, sinoporphyrin sodium (DVDMS), on the human small cell lung cancer H446 cell line in vitro and in vivo. Methods: Absorption of DVDMS was detected by a fluorescence spectrophotometer, and DVDMS toxicity was determined using a Cell Counting Kit-8. Mitochondrial membrane potential (MMP) was assessed using the JC-1 fluorescent probe. Cell apoptosis was measured by flow cytometry, and apoptosis-related proteins were detected by western blotting. The expression of cytokines was measured using an enzyme-linked immunosorbent assay and quantitative real-time PCR. To verify the in vitro results, we detected tumor volumes and weight changes in a xenograft nude mouse model after DVDMS-SDT. Hematoxylin and eosin staining was used to observe changes to the tumor, heart, liver, spleen, lung, and kidney of the mice, and immunohistochemistry was used to examine changes in the expression of tumor CD34 and receptor-interacting protein kinase-3 (RIP3), while terminal deoxynucleotidyl transferase-mediated dUTP nick-end labeling was used to observe apoptosis in tumor tissues. Results: DVDMS-SDT-treated H446 cells increased the rate of cellular apoptosis and the levels of reactive oxygen species (ROS), cleaved caspase-3, cleaved caspase-8, cleaved caspase-9, and caspase-10, and decreased the levels of MMP, RIP3, B-cell lymphoma 2, vascular endothelial growth factor, and tumor necrosis factor-α. The sonotoxic effect was mediated by ROS and was reduced by a ROS scavenger (N-acetyl-L-cysteine). In the in vivo mouse xenograft model, DVDMS-SDT showed efficient anti-cancer effects with no visible side effects. Conclusion: DVDMS-SDT induced apoptosis in H446 cells, in part by targeting mitochondria through the mitochondria-mediated apoptosis signaling pathway, and the extrinsic apoptosis pathway was also shown to be involved. Both apoptosis and changes in RIP3 expression were closely related to the generation of ROS. DVDMS-SDT will be advantageous for the management of small cell lung cancer due to its noninvasive characteristics.


2020 ◽  
Vol 9 (10) ◽  
pp. 5956-5968
Author(s):  
Lei Wang ◽  
Chunyan Yang ◽  
Fangfang Li ◽  
Dengcai Mu ◽  
Pengzhan Ran ◽  
...  

2018 ◽  
Vol 45 (5) ◽  
pp. 2054-2070 ◽  
Author(s):  
Ye Liang ◽  
Wenhua Xu ◽  
Shihai Liu ◽  
Jingwei Chi ◽  
Jisheng Zhang ◽  
...  

Background/Aims: Tumor necrosis factor-related apoptosis-inducing ligand (TRAIL) is a potential anti-cancer agent due to its selective toxicity. However, many human non-small cell lung cancer (NSCLC) cells are partially resistant to TRAIL, thereby limiting its clinical application. Therefore, there is a need for the development of novel adjuvant therapeutic agents to be used in combination with TRAIL. Methods: In this study, the effect of N-acetyl-glucosamine (GlcNAc), a type of monosaccharide derived from chitosan, combined with TRAIL was evaluated in vitro and in vivo. Thirty NSCLC clinical samples were used to detect the expression of death receptor (DR) 4 and 5. After GlcNAc and TRAIL co-treatment, DR expression was determined by real-time PCR and western blotting. Cycloheximide was used to detect the protein half-life to further understand the correlation between GlcNAc and the metabolic rate of DR. Non-reducing sodium dodecyl sulfate-polyacrylamide gel electrophoresis was used to detect receptor clustering, and the localization of DR was visualized by immunofluorescence under a confocal microscope. Furthermore, a co-immunoprecipitation assay was performed to analyze the formation of death-inducing signaling complex (DISC). O-linked glycan expression levels were evaluated following DR5 overexpression and RNA interference mediated knockdown. Results: We found that the clinical samples expressed higher levels of DR5 than DR4, and GlcNAc co-treatment improved the effect of TRAIL-induced apoptosis by activating DR5 accumulation and clustering, which in turn recruited the apoptosis-initiating protease caspase-8 to form DISC, and initiated apoptosis. Furthermore, GlcNAc promoted DR5 clustering by improving its O-glycosylation. Conclusion: These results uncovered the molecular mechanism by which GlcNAc sensitizes cancer cells to TRAIL-induced apoptosis, thereby highlighting a novel effective agent for TRAIL-mediated NSCLC-targeted therapy.


Sign in / Sign up

Export Citation Format

Share Document