The Hypothalamic-Pituitary-Adrenal Axis: A Brief History

2018 ◽  
Vol 89 (4) ◽  
pp. 212-223 ◽  
Author(s):  
Walter L. Miller

The hypothalamic-pituitary-adrenal (HPA) axis is central to homeostasis, stress responses, energy metabolism, and neuropsychiatric function. The history of this complex system involves discovery of the relevant glands (adrenal, pituitary, hypothalamus), hormones (cortisol, corticotropin, corticotropin-releasing hormone), and the receptors for these hormones. The adrenal and pituitary were identified by classical anatomists, but most of this history has taken place rather recently, and has involved complex chemistry, biochemistry, genetics, and clinical investigation. The integration of the HPA axis with modern neurology and psychiatry has cemented the role of endocrinology in contemporary studies of behavior.

1999 ◽  
pp. 130-136 ◽  
Author(s):  
R Krysiak ◽  
E Obuchowicz ◽  
ZS Herman

The aim of this paper is to review the present knowledge of interactions between the neuropeptide Y (NPY) system and the hypothalamic-pituitary-adrenal (HPA) axis. On the basis of in vitro and in vivo studies of various animal species, we review the effects of NPY on all levels of HPA axis activity. We also describe the effects of glucocorticosteroids on the NPY system in the hypothalamus, including interactions between glucocorticosteroids and insulin. On the basis of available literature, we discuss the role of these interactions in the control of food intake and in the pathogenesis of obesity.


2004 ◽  
Vol 181 (2) ◽  
pp. 207-221 ◽  
Author(s):  
JI Webster ◽  
EM Sternberg

The hypothalamic-pituitary-adrenal (HPA) axis is activated during many bacterial and viral infections, resulting in an increase in circulating glucocorticoid levels. This HPA axis activation and glucocorticoid response are critical for the survival of the host, as demonstrated by the fact that removal of the HPA axis (by adrenalectomy or hypophysectomy) or glucocorticoid receptor (GR) blockade enhances the severity of the infection and in some cases enhances the mortality rate. Replacement with a synthetic glucocorticoid reverses these effects by reducing the severity of the infection and provides protection against lethal effects. In addition, some bacteria and viral infections have been shown to affect the GR directly. These have been described and the implications of such an effect discussed.


Cells ◽  
2020 ◽  
Vol 9 (4) ◽  
pp. 900
Author(s):  
Dongyun Zhang ◽  
Anthony P. Heaney

The hypothalamic–pituitary–adrenal (HPA) axis plays a critical role in adaptive stress responses and maintaining organism homeostasis. The pituitary corticotroph is the central player in the HPA axis and is regulated by a plethora of hormonal and stress related factors that synergistically interact to activate and temper pro-opiomelanocortin (POMC) transcription, to either increase or decrease adrenocorticotropic hormone (ACTH) production and secretion as needed. Nuclear receptors are a family of highly conserved transcription factors that can also be induced by various physiologic signals, and they mediate their responses via multiple targets to regulate metabolism and homeostasis. In this review, we summarize the modulatory roles of nuclear receptors on pituitary corticotroph cell POMC transcription, describe the unique and complex role these factors play in hypothalamic–pituitary–adrenal axis (HPA) regulation and discuss potential therapeutic targets in disease states.


2008 ◽  
Vol 20 (3) ◽  
pp. 975-1001 ◽  
Author(s):  
Emma K. Adam ◽  
Jonathan M. Sutton ◽  
Leah D. Doane ◽  
Susan Mineka

AbstractAltered functioning of the hypothalamic–pituitary–adrenal (HPA) axis is a robust correlate of major depression in adults, and to a lesser extent, in adolescents. Premorbid differences in HPA axis function have been found to prospectively predict the onset of adolescent depression. To what extent might our knowledge of HPA axis function in adolescents with, or at risk for, depression, help guide efforts to prevent depression in this age group? We review evidence regarding the role of the HPA axis in the development of adolescent depression, and examine whether and which HPA axis measures might be useful in guiding prevention efforts as (a) as a criterion by which to select youth at risk for depression, (b) as a predictor of which youth will be most responsive to prevention efforts, and (c) as an indicator of whether prevention/intervention efforts are working. We conclude that our current understanding of the HPA axis, and its measurement, in adolescent depression are not sufficiently precise to be of immediate practical use in improving prevention efforts. Incorporating HPA axis measures into prevention studies, however, would be immensely useful in clarifying the role of the HPA axis in adolescent depression, such that future prevention efforts might more confidently rely on HPA axis information.


2021 ◽  
Vol 3 (3) ◽  
pp. 403-408
Author(s):  
Athanasios Tselebis ◽  
Emmanouil Zoumakis ◽  
Ioannis Ilias

In this concise review, we present an overview of research on dream recall/affect and of the hypothalamic–pituitary–adrenal (HPA) axis, discussing caveats regarding the action of hormones of the HPA axis (mainly cortisol and its free form, cortisol-binding globulin and glucocorticoid receptors). We present results of studies regarding dream recall/affect and the HPA axis under physiological (such as waking) or pathological conditions (such as in Cushing’s syndrome or stressful situations). Finally, we try to integrate the effect of the current COVID-19 situation with dream recall/affect vis-à-vis the HPA axis.


Author(s):  
Susanne Fischer ◽  
Tabea Schumacher ◽  
Christine Knaevelsrud ◽  
Ulrike Ehlert ◽  
Sarah Schumacher

Abstract Background Less than half of all individuals with post-traumatic stress disorder (PTSD) remit spontaneously and a large proportion of those seeking treatment do not respond sufficiently. This suggests that there may be subgroups of individuals who are in need of augmentative or alternative treatments. One of the most frequent pathophysiological findings in PTSD is alterations in the hypothalamic–pituitary–adrenal (HPA) axis, including enhanced negative feedback sensitivity and attenuated peripheral cortisol. Given the role of the HPA axis in cognition, this pattern may contribute to PTSD symptoms and interfere with key processes of standard first-line treatments, such as trauma-focused cognitive behavioural therapy (TF-CBT). Methods This review provides a comprehensive summary of the current state of research regarding the role of HPA axis functioning in PTSD symptoms and treatment. Results Overall, there is preliminary evidence that hypocortisolaemia contributes to symptom manifestation in PTSD; that it predicts non-responses to TF-CBT; and that it is subject to change in parallel with positive treatment trajectories. Moreover, there is evidence that genetic and epigenetic alterations within the genes NR3C1 and FKBP5 are associated with this hypocortisolaemic pattern and that some of these alterations change as symptoms improve over the course of treatment. Conclusions Future research priorities include investigations into the role of the HPA axis in day-to-day symptom variation, the time scale in which biological changes in response to treatment occur, and the effects of sex. Furthermore, before conceiving augmentative or alternative treatments that target the described mechanisms, multilevel studies are warranted.


2003 ◽  
Vol 285 (5) ◽  
pp. E1110-E1117 ◽  
Author(s):  
D. Zelena ◽  
Z. Mergl ◽  
A. Földes ◽  
K. J. Kovács ◽  
Z. Tóth ◽  
...  

The role of hypothalamic structures in the regulation of chronic stress responses was studied by lesioning the mediobasal hypothalamus or the paraventricular nucleus of hypothalamus (PVH). Rats were acutely (60 min) and/or repeatedly (for 7 days) restrained. In controls, a single restraint elevated the plasma adrenocorticotropin (ACTH), corticosterone, and prolactin levels. Repeated restraint produced all signs of chronic stress, including decreased body and thymus weights, increased adrenal weight, basal corticosterone levels, and proopiomelanocortin (POMC) mRNA expression in the anterior pituitary. Some adaptation to repeated restraint of the ACTH response, but not of other hormonal responses, was seen. Lesioning of the mediobasal hypothalamus abolished the hormonal response and POMC mRNA activation to acute and/or repeated restraint, suggesting that the hypothalamo-pituitary-adrenal axis activation during repeated restraint is centrally driven. PVH lesion inhibited the ACTH and corticosterone rise to the first restraint by ∼50%. In repeatedly restrained rats with PVH lesion, the ACTH response to the last restraint was reduced almost to basal control levels, and the elevation of POMC mRNA level was prevented. PVH seems to be important for the repeated restraint-induced ACTH and POMC mRNA stimulation, but it appears to partially mediate other restraint-induced hormonal changes.


Sign in / Sign up

Export Citation Format

Share Document