scholarly journals Enteral Baicalin, a Flavone Glycoside, Reduces Indicators of Cardiac Surgery-Associated Acute Kidney Injury in Rats

2018 ◽  
Vol 9 (1) ◽  
pp. 31-40 ◽  
Author(s):  
Jing Shi ◽  
Guofeng Wu ◽  
Xiaohua Zou ◽  
Ke Jiang

Background/Aims: Cardiac surgery-associated acute kidney injury (CSA-AKI) is one of the most common postoperative complications in intensive care medicine. Baicalin has been shown to have anti-inflammatory and antioxidant roles in various disorders. We aimed to test the protective effects of baicalin on CSA-AKI using a rat model. Methods: Sprague-Dawley rats underwent 75 min of cardiopulmonary bypass (CPB) with 45 min of cardioplegic arrest (CA) to establish the AKI model. Baicalin was administered at different doses intragastrically 1 h before CPB. The control and treated rats were subjected to the evaluation of different kidney injury index and inflammation biomarkers. Results: Baicalin significantly attenuated CPB/CA-induced AKI in rats, as evidenced by the lower levels of serum creatinine, serum NGAL, and Kim1. Baicalin remarkably inhibited oxidative stress, reflected in the decreased malondialdehyde and myeloperoxidase activity, and enhanced superoxide dismutase activity and glutathione in renal tissue. Baicalin suppressed the expression of IL-18 and iNOS, and activated the Nrf2/HO-1 pathway. Conclusion: Our data indicated that baicalin mediated CPB/CA-induced AKI by decreasing the oxidative stress and inflammation in the renal tissues, and that baicalin possesses the potential to be developed as a therapeutic tool in clinical use for CSA-AKI.

2019 ◽  
Vol 51 (8) ◽  
pp. 2838-2841
Author(s):  
Won Seo Park ◽  
Min Su Park ◽  
Sang Wook Kang ◽  
Seul A. Jin ◽  
Youngchul Jeon ◽  
...  

2021 ◽  
Vol 2021 ◽  
pp. 1-16
Author(s):  
Esmaeel Babaeenezhad ◽  
Forouzan Hadipour Moradi ◽  
Sobhan Rahimi Monfared ◽  
Mohammad Davood Fattahi ◽  
Maryam Nasri ◽  
...  

Clinical application of gentamicin (GM) is well known to be associated with the development of acute kidney injury (AKI). This study was the first to investigate the possible protective effects of D-limonene (D-lim) on AKI following GM administration in rats. 32 rats arranged in four groups ( n = 8 ): (1) the control group received saline intraperitoneally (0.5 ml/day) and orally (0.5 ml/day), (2) the D-lim group received D-lim (100 mg/kg) orally and saline (0.5 ml/day) intraperitoneally, (3) the GM group received GM (100 mg/kg/day) intraperitoneally and saline (0.5 ml/day) orally, and (4) the treated group received intraperitoneal GM (100 mg/kg) and oral D-lim (100 mg/kg). All treatments were performed daily for 12 consecutive days. Results revealed that D-lim ameliorated GM-induced AKI, oxidative stress, mitochondrial apoptosis, and inflammation. D-lim showed nephroprotective effects as reflected by the decrease in serum urea and creatinine and improvement of renal histopathological changes. D-lim alleviated GM-induced oxidative stress by increasing the activities of renal catalase, serum and renal glutathione peroxidase, and renal superoxide dismutase and decreasing renal malondialdehyde and serum nitric oxide levels. Intriguingly, D-lim suppressed mitochondrial apoptosis by considerably downregulating Bax and caspase-3 (Casp-3) mRNA and protein expressions and markedly enhancing Bcl2 mRNA and protein expressions. Furthermore, D-lim significantly decreases GM-induced inflammatory response through downregulation of NF-κB, IL-6, and TNF-α mRNA and/or protein expressions and decrease in renal myeloperoxidase activity. Finally, D-lim remarkably downregulated PCNA protein expression in the treated group compared with the GM group. In brief, this study showed that D-lim alleviated AKI following GM administration in rats, partially through its antioxidant, anti-inflammatory, and antiapoptotic activities as well as downregulation of PCNA expression.


2019 ◽  
Vol 10 (10) ◽  
Author(s):  
Dongdong Yuan ◽  
Xiaoyun Li ◽  
Chenfang Luo ◽  
Xianlong Li ◽  
Nan Cheng ◽  
...  

Abstract Postoperative acute kidney injury (AKI) is a severe complication after liver transplantation (LT). Its deterioration and magnification lead to the increase in mortality. Connexin43 (Cx43) mediates direct transmission of intracellular signals between neighboring cells, always considered to be the potent biological basis of organ damage deterioration and magnification. Thus, we explored the effects of Cx43 on AKI following LT and its related possible mechanism. In this study, alternations of Cx43 expression were observed in 82 patients, receiving the first-time orthotopic LT. We built autologous orthotopic liver transplantation (AOLT) models with Sprague–Dawley (SD) rats in vivo, and hypoxia-reoxygenation (H/R) or lipopolysaccharide (LPS) pretreatment models with kidney tubular epithelial cells (NRK-52E) in vitro, both of which were the most important independent risk factors of AKI following LT. Then, different methods were used to alter the function of Cx43 channels to determine its protective effects on AKI. The results indicated that patients with AKI suffering from longer time of tracheal intubation or intensive care unit stay, importantly, had significantly lower survival rate at postoperative 30 days and 3 years. In rat AOLT models, as Cx43 was inhibited with heptanol, postoperative AKI was attenuated significantly. In vitro experiments, downregulation of Cx43 with selective inhibitors, or siRNA protected against post-hypoxic NRK-52E cell injuries caused by H/R and/or LPS, while upregulation of Cx43 exacerbated the above-mentioned cell injuries. Of note, alternation of Cx43 function regulated the content of reactive oxygen species (ROS), which not only mediated oxidative stress and inflammation reactions effectively, but also regulated necroptosis. Therefore, we concluded that Cx43 inhibition protected against AKI following LT through attenuating ROS transmission between the neighboring cells. ROS alternation depressed oxidative stress and inflammation reaction, which ultimately reduced necroptosis. This might offer new insights for targeted intervention for organ protection in LT, or even in other major surgeries.


Circulation ◽  
2015 ◽  
Vol 132 (suppl_3) ◽  
Author(s):  
Zhiquan Zhang ◽  
Qing Ma ◽  
Mihai V Podgoreanu

Introduction: Acute kidney injury (AKI) is a prevalent and prognostically important complication of cardiac surgery. The complex multifactorial pathogenesis and lack of appropriate animal models to recapitulate the clinical insults leading to CSA-AKI have been implicated in the failure of multiple pharmacologic renoprotective strategies. We have reported anti-inflammatory and renoprotective effects of a novel Annexin-A1 (ANXA1) tripeptide (Ac-QAW) in a rodent model of experimental cardiac surgery. Here, we tested the hypothesis that Ac-QAW attenuates CSA-AKI by upregulating Sirtuin6 and Forkhead box protein O3 (SIRT6/FoxO3), key players in stress resistance, cell survival, and life span. Methods: Male Sprague-Dawley rats underwent 75 min of cardiopulmonary bypass (CPB) with 45 min of cardioplegic arrest (CA). Animals were treated (iv) with 1 mg/kg Ac-QAW (n = 6), the commercially available ANXA1 peptide Ac2-26 (as a positive control; n = 5), or vehicle (n = 6) at 1 h before CPB, during CA, and 1 h after CPB. At 24 h post-reperfusion, renal levels of activated caspase-3, ANXA1, SIRT6, and FoxO3 were determined by Western blot; renal and plasma levels of myeloperoxidase (MPO) were determined by ELISA. Results: At 24 hours post-reperfusion following CPB/CA, rats treated with Ac-QAW showed a) reduced renal caspase-3 activity (P < 0.05); b) decreased MPO in both blood and kidney; and c) increased renal levels of ANXA1 (P < 0.05), SIRT6, and FoxO3 (P < 0.01) (Figure). Conclusions: Using a clinically relevant animal model, we provide preliminary translatable evidence that administration of Ac-QAW attenuates CSA-AKI. This may result from action by Ac-QAW to 1) reduce inflammation by increasing inflammation-resolving molecule ANXA1; 2) inhibit neutrophil transmigration; and 3) promote pro-survival mechanisms by increasing SIRT6/FoxO3 expression. More Ac-QAW studies are needed to define its exact mechanism of action and its impact on long-term functional outcomes.


2017 ◽  
Vol 2017 ◽  
pp. 1-10 ◽  
Author(s):  
Xiao-lei Wang ◽  
Tuo Zhang ◽  
Liu-hua Hu ◽  
Shi-qun Sun ◽  
Wei-feng Zhang ◽  
...  

Statins are a promising new strategy to prevent contrast-induced acute kidney injury (CI-AKI). In this study we compared the ameliorative effect of different statins in a rat model of CI-AKI. Sprague-Dawley rats were divided into five groups: control group; CI-AKI group; CI-AKI + rosuvastatin group (10 mg/kg/day); CI-AKI + simvastatin group (80 mg/kg/day); and CI-AKI + atorvastatin group (20 mg/kg/day). CI-AKI was induced by dehydration for 72 hours, followed by furosemide intramuscular injection 20 minutes before low-osmolar contrast media (CM) intravenous injection. Statins were administered by oral gavage once daily for 3 consecutive days before CM injection and once 4 hours after CM injection. Rats were sacrificed 24 hours after CM injection, and renal function, kidney histopathology, nitric oxide (NO) metabolites, and markers of oxidative stress, inflammation, and apoptosis were evaluated. The results showed that atorvastatin and rosuvastatin but not simvastatin ameliorated CM-induced serum creatinine elevation and histopathological alterations. Atorvastatin and rosuvastatin showed similar effectiveness against CM-induced oxidative stress, but simvastatin was less effective. Atorvastatin was most effective against NO system dysfunction and cell apoptosis, whereas rosuvastatin was most effective against inflammation. Our findings indicate that statins exhibit differential effects in preventing CI-AKI when given at equivalent lipid-lowering doses.


2016 ◽  
Vol 7 (1) ◽  
Author(s):  
Rehab H. Ashour ◽  
Mohamed-Ahdy Saad ◽  
Mohamed-Ahmed Sobh ◽  
Fatma Al-Husseiny ◽  
Mohamed Abouelkheir ◽  
...  

Author(s):  
HAYDER M AL-KURAISHY ◽  
ALI I AL-GAREEB ◽  
HUDA ABDULBAKI RASHEED

Objectives: Nephrotoxicity is a renal-specific situation in which the excretion of toxic metabolites is reduced due to toxic agents and drugs. Gentamicin is an antibiotic belongs to aminoglycoside group which may induce nephrotoxicity due to induction of oxidative stress. Curcumin is a component of traditional medicine with significant nephroprotective effect. Therefore, the objective of the present study was to evaluate the nephroprotective effect of curcumin on gentamicin-induced nephrotoxicity. Methods: A total of 30 male Sprague-Dawley rats were used which divided into Group 1 (n=10): Rats treated with distilled water 5 ml/kg plus normal saline 5 ml/kg for 12 days, Group 2 (n=10): Rats treated with distilled water 5 ml/kg plus gentamicin 100 mg/kg for 12 days, and Group 3 (n=10): Rats treated with curcumin 100 mg/kg plus gentamicin 100 mg/kg for 12 days. Blood urea, serum creatinine, malondialdehyde (MDA), kidney injury molecule (KIM-1), and cystatin-C were measured in both control and experimental groups. Results: Rats treated with gentamicin showed nephrotoxicity as evident by significant elevation in blood urea, serum creatinine, KIM-1, MDA, and cystatin-C sera levels. Curcumin leads to significant reduction of blood urea and serum creatinine compared to gentamicin group, p<0.05. Curcumin also reduced MDA, KIM-1, and cystatin-C sera levels significantly compared to gentamicin group, p<0.01. Conclusion: Curcumin produced significant nephroprotective effect on gentamicin-induced nephrotoxicity through modulation of oxidative stress and inflammatory biomarkers.


2016 ◽  
Vol 2016 ◽  
pp. 1-10 ◽  
Author(s):  
Xiaofang Yu ◽  
Xinjin Chi ◽  
Shan Wu ◽  
Yi Jin ◽  
Hui Yao ◽  
...  

This paper aims to explore whether pretreatment with dexmedetomidine (Dex) has antioxidative and renal protective effects during orthotopic autologous liver transplantation (OALT) and its impact on nuclear factor erythroid 2-related factor 2 (Nrf2) activation. Sprague-Dawley rats were randomized into groups that include sham-operated (group S), model (group M), low dose Dex (group D1), high dose Dex (group D2), atipamezole (a nonspecificα2receptor blocker) + high dose Dex (group B1), ARC239 (a specificα2B/creceptor blocker) + high dose Dex (group B2), and BRL-44408 (a specificα2Areceptor blocker) + high dose Dex (group B3). Then histopathologic examination of the kidneys and measurement of renal function, the renal Nrf2 protein expression, and oxidants and antioxidants were performed 8 hours after OALT. We found that pretreatment with Dex activated Nrf2 in glomerular cells and upregulated antioxidants but reduced oxidants (allP<0.01, group D2 versus group M). Atipamezole and BRL-44408, but not ARC239, reversed these protective effects. In conclusion, pretreatment with Dex activates Nrf2 throughα2Areceptor, increases the antioxidant levels, and attenuates renal injury during OALT.


Sign in / Sign up

Export Citation Format

Share Document