Effect of Salt Intake on the Serum Cardiotrophin-1 Levels in Chinese Adults

2018 ◽  
Vol 73 (4) ◽  
pp. 302-309 ◽  
Author(s):  
Keke Wang ◽  
Chao Chu ◽  
Jiawen Hu ◽  
Yang Wang ◽  
Wenling Zheng ◽  
...  

Background: Dietary sodium affects fluctuations in blood pressure (BP) and vascular function. Cardiotrophin-1 (CT-1), a stress-induced cytokine that belongs to the interleukin 6 family, is released by cells in response to potentially harmful stresses and plays a pivotal role in congestive heart failure, hypertension and arterial stiffness. In this study, we performed a randomized trial to confirm the effects of altered salt intake on the serum CT-1 levels in humans. Methods: Forty-four subjects (18–65 years of age) were selected from a rural community in northern China. All subjects initially maintained a baseline period for 3 days, transitioned to a low-salt (LS) diet for 7 days (3.0 g/day of NaCl) and then a high-salt (HS) diet for an additional 7 days (18.0 g/day of NaCl). Results: For the whole group, the serum CT-1 concentrations were significantly increased in the HS period compared to those of the LS period (293.50 ± 137.70 vs. 360.40 ± 162.83 pg/mL, p = 0.040). The serum CT-1 concentrations significantly decreased from the baseline period to the LS diet (419.91 ± 123.50 to 256.49 ± 109.75 pg/mL, p < 0.01) and significantly increased from the LS to HS diet (256.49 ± 109.75 to 414.39 ± 191.21 pg/mL, p < 0.01). These changes were observed in salt-sensitive (SS) individuals but not in salt-resistant (SR) individuals. In addition, a significant positive relationship was observed between the changes in the CT-1 concentrations and systolic BP as well as the changes in the mean arterial pressure from the LS period to the HS period (r = 0.376, p = 0.012; r = 0.311, p = 0.040). The serum CT-1 concentrations were positively correlated with the 24-h urinary sodium-to-potassium (Na/K) excretion ratios during both of the LS and HS diet intervention periods in SS subjects (r = 0.621, p < 0.01), but this correlation was not evident in SR subjects (r = 0.208, p = 0.107). Conclusions: Our study indicates that variations in dietary salt intake affect the serum CT-1 levels in Chinese adults.

2009 ◽  
Vol 297 (2) ◽  
pp. F237-F243 ◽  
Author(s):  
Paul W. Sanders

Animal and human studies support an untoward effect of excess dietary NaCl (salt) intake on cardiovascular and renal function and life span. Recent work has promoted the concept that the endothelium, in particular, reacts to changes in dietary salt intake through a complex series of events that are independent of blood pressure and the renin-angiotensin-aldosterone axis. The cellular signaling events culminate in the intravascular production of transforming growth factor-β (TGF-β) and nitric oxide in response to increased salt intake. Plasticity of the endothelium is integral in the vascular remodeling consequences associated with excess salt intake, because nitric oxide serves as a negative regulator of TGF-β production. Impairment of nitric oxide production, such as occurs with endothelial dysfunction in a variety of disease states, results in unopposed excess vascular TGF-β production, which promotes reduced vascular compliance and augmented peripheral arterial constriction and hypertension. Persistent alterations in vascular function promote the increase in cardiovascular events and reductions in renal function that reduce life span during increased salt intake.


Cardiology ◽  
2015 ◽  
Vol 130 (4) ◽  
pp. 242-248 ◽  
Author(s):  
Yang Wang ◽  
Dan Wang ◽  
Chao Chu ◽  
Jian-Jun Mu ◽  
Man Wang ◽  
...  

Objective: The aim of our study was to assess the effects of altered salt and potassium intake on urinary renalase and serum dopamine levels in humans. Methods: Forty-two subjects (28-65 years of age) were selected from a rural community of northern China. All subjects were sequentially maintained on a low-salt diet for 7 days (3.0 g/day of NaCl), a high-salt diet for an additional 7 days (18.0 g/day of NaCl), and a high-salt diet with potassium supplementation for a final 7 days (18.0 g/day of NaCl + 4.5 g/day of KCl). Results: Urinary renalase excretions were significantly higher during the high-salt diet intervention than during the low-salt diet. During high-potassium intake, urinary renalase excretions were not significantly different from the high-salt diet, whereas they were significantly higher than the low-salt levels. Serum dopamine levels exhibited similar trends across the interventions. Additionally, a significant positive relationship was observed between the urine renalase and serum dopamine among the different dietary interventions. Also, 24-hour urinary sodium excretion positively correlated with urine renalase and serum dopamine in the whole population. Conclusions: The present study indicates that dietary salt intake and potassium supplementation increase urinary renalase and serum dopamine levels in Chinese subjects.


2020 ◽  
Vol 41 (Supplement_2) ◽  
Author(s):  
J.R Choi

Abstract   Excessive dietary salt intake is associated with an increased risk of hypertension. Salt sensitivity, i.e., an elevation in blood pressure in response to high dietary salt intake, has been associated with a high risk of cardiovascular disease and mortality. We investigated whether a causal association exists between dietary sodium intake and hypertension risk using Mendelian randomization (MR). We performed an MR study using data from a large genome-wide association study comprising 15,034 Korean adults in a community-based cohort study. A total of 1,282 candidate single nucleotide polymorphisms associated with dietary sodium intake, such as rs2960306, rs4343, and rs1937671, were selected as instrumental variables. The inverse variance weighted method was used to assess the evidence for causality. Higher dietary sodium intake was associated with salt-sensitive hypertension risk. The variants of SLC8E1 rs2241543 and ADD1 rs16843589 were strongly associated with increased blood pressure. In the logistic regression model, after adjusting for age, gender, smoking, drinking, exercise, and body mass index, the GRK4 rs2960306TT genotype was inversely associated with hypertension risk (OR = 0.356, 95% CI = 0.236–0.476). However, the 2350GG genotype (ACE rs4343) exhibited a 2.11-fold increased hypertension risk (OR = 2.114, 95% CI = 2.004–2.224) relative to carriers of the 2350AA genotype, after adjusting for confounders. MR analysis revealed that the odds ratio for hypertension per 1 mg/day increment of dietary sodium intake was 2.24 in participants with the PRKG1 rs12414562 AA genotype. Our findings suggest that dietary sodium intake may be causally associated with hypertension risk. Funding Acknowledgement Type of funding source: Public Institution(s). Main funding source(s): This research was supported by the Basic Science Research Program through the National Research Foundation of Korea (NRF), funded by the Ministry of Education (2017R1D1A3B03034119, 2014M3C9A3064552), and the KRIBB Initiative program. This research was also supported by the Medical Research Center Program (2017R1A5A2015369). This work was supported (in part) by the Yonsei University Research Fund 2017. Bioresources for this study were provided by the National Biobank of Korea and the Centers for Disease Control and Prevention, Republic of Korea (2017-009).


2020 ◽  
Author(s):  
Qiong Ma ◽  
Chao Chu ◽  
Yanbo Xue ◽  
Yu Yan ◽  
Jiawen Hu ◽  
...  

Abstract Background: Salt is a crucial factor for blood pressure modulation, especially in salt-sensitive individuals. Sphingosine-1-phosphate (S1P), a pleiotropic bioactive sphingolipid metabolite participating in blood pressure regulation, has recently been identified as a novel lipid diuretic factor. However, the relationships among salt intake, circulating S1P levels, and blood pressure changes in human beings are unknown. Thus, we conducted this intervention trial to explore the effect of dietary salt intake on plasma S1P levels and to examine the relationship between S1P and blood pressure in Chinese adults.Methods: 42 participants (aged 18–65 years) were recruited from a rural community in Shaanxi, China. All participants first maintained their normal diet for 3 days, then sequentially ate a low-sodium diet (3.0 g/day NaCl) for 7 days, followed by a high-sodium diet (18.0 g/day NaCl) for 7 days. We assessed their plasma S1P concentrations on the last day of each intervention phase by liquid chromatography-tandem mass spectrometry. We classified the subjects who demonstrated at least a 10% increase in mean arterial pressure upon transitioning from a low-salt to a high-salt diet as salt-sensitive and the others as salt-resistant. Differences in repeated measures were analyzed by repeated-measures analysis of variance. Results: Plasma S1P levels decreased significantly from the baseline to low-salt diet period and increased from the low-salt to high-salt diet period. We observed this response in both salt-sensitive and salt-resistant individuals. Plasma S1P levels positively correlated with 24-hour urinary sodium excretion, but not 24-hour urinary potassium excretion. In line with plasma S1P level responses to salt intervention, systolic blood pressure (SBP) and mean arterial pressure (MAP) decreased from the baseline to low-salt diet period and increased from the low-salt to high-salt period. SBP positively correlated with plasma S1P and the correlation was stronger in salt-sensitive individuals than that in salt-resistant individuals. Conclusion: Low-salt dietary intervention decreases plasma S1P levels, whereas high-salt intervention reverses this change and S1P levels positively correlated with SBP in Chinese adults. This provides a high-efficiency and low-cost intervention for plasma S1P levels modulation, with implications for salt-induced blood pressure modulation. Trial registration: NCT02915315. Registered 27 September 2016, http://www.clinicaltrials.gov


1999 ◽  
Vol 276 (6) ◽  
pp. R1749-R1757 ◽  
Author(s):  
Osamu Ito ◽  
Richard J. Roman

We recently reported that an enzyme of the cytochrome P-450 4A family is expressed in the glomerulus, but there is no evidence that 20-hydroxyeicosatetraenoic acid (20-HETE) can be produced by this tissue. The purpose of present study was to determine whether glomeruli isolated from the kidney of rats can produce 20-HETE and whether the production of this metabolite is regulated by nitric oxide (NO) and dietary salt intake. Isolated glomeruli produced 20-HETE, dihydroxyeicosatrienoic acids, and 12-hydroxyeicosatetraenoic acid (4.13 ± 0.38, 4.20 ± 0.38, and 2.10 ± 0.20 pmol ⋅ min−1⋅ mg protein−1, respectively) when incubated with arachidonic acid (10 μM). The formation of 20-HETE was dependent on the availability of NADPH and the[Formula: see text] of the incubation medium. The formation of 20-HETE was inhibited by NO donors in a concentration-dependent manner. The production of 20-HETE was greater in glomeruli isolated from the kidneys of rats fed a low-salt diet than in kidneys of rats fed a high-salt diet (5.67 ± 0.32 vs. 2.83 ± 0.32 pmol ⋅ min−1⋅ mg protein−1). Immunoblot experiments indicated that the expression of P-450 4A protein in glomeruli from the kidneys of rats fed a low-salt diet was sixfold higher than in kidneys of rats fed a high-salt diet. These results indicate that arachidonic acid is primarily metabolized to 20-HETE and dihydroxyeicosatrienoic acids in glomeruli and that glomerular P-450 activity is modulated by NO and dietary salt intake.


1998 ◽  
Vol 274 (3) ◽  
pp. F481-F489 ◽  
Author(s):  
Tianxin Yang ◽  
Inderjit Singh ◽  
Hang Pham ◽  
Daqing Sun ◽  
Ann Smart ◽  
...  

The present studies were undertaken to determine the effect of dietary salt intake on the renal expression of cyclooxygenase-1 (COX-1) and -2 (COX-2). Protein levels were assessed by Western blotting, and mRNA expression was assessed by reverse transcription-polymerase chain reaction (RT-PCR) on cDNA prepared from kidney regions, dissected nephron segments, and cultured renal cells. Both isoforms were expressed at high levels in inner medulla (IM), with low levels detected in outer medulla and cortex. COX-1 mRNA was present in the glomerulus and all along the collecting duct, whereas COX-2 mRNA was restricted to the macula densa-containing segment (MD), cortical thick ascending limb (CTAL), and, at significantly lower levels, in the inner medullary collecting duct. Both isoforms were highly expressed at high levels in cultured medullary interstitial cells and at lower levels in primary mesangial cells and collecting duct cell lines. Maintaining rats on a low- or high-NaCl diet for 1 wk did not affect expression of COX-1. In IM of rats treated with a high-salt diet, COX-2 mRNA increased 4.5-fold, and protein levels increased 9.5-fold. In contrast, cortical COX-2 mRNA levels decreased 2.9-fold in rats on a high-salt diet and increased 3.3-fold in rats on a low-salt diet. A low-salt diet increased COX-2 mRNA 7.7-fold in MD and 3.3-fold in CTAL. Divergent regulation of COX-2 in cortex and medulla by dietary salt suggests that prostaglandins in different kidney regions serve different functions, with medullary production playing a role in promoting the excretion of salt and water in volume overload, whereas cortical prostaglandins may protect glomerular circulation in volume depletion.


2001 ◽  
Vol 280 (4) ◽  
pp. R1069-R1075 ◽  
Author(s):  
Chagriya Kitiyakara ◽  
Tina Chabrashvili ◽  
Pedro Jose ◽  
William J. Welch ◽  
Christopher S. Wilcox

Because l-arginine is degraded by hepatic arginase to ornithine and urea and is transported by the regulated 2A cationic amino acid y+ transporter (CAT2A), hepatic transport may regulate plasma arginine concentration. Groups of rats ( n = 6) were fed a diet of either low salt (LS) or high salt (HS) for 7 days to test the hypothesis that dietary salt intake regulates plasma arginine concentration and renal nitric oxide (NO) generation by measuring plasma arginine and ornithine concentrations, renal NO excretion, and expression of hepatic CAT2A, and arginase. LS rats had lower excretion of NO metabolites and cGMP, lower plasma arginine concentration (LS: 83 ± 7 vs. HS: 165 ± 10 μmol/l, P < 0.001), but higher plasma ornithine concentration (LS: 82 ± 6 vs. HS: 66 ± 4 μmol/l, P < 0.05) and urea excretion. However, neither the in vitro hepatic arginase activity nor the mRNA for hepatic arginase I was different between groups. In contrast, LS rats had twice the abundance of mRNA for hepatic CAT2A (LS: 3.4 ± 0.4 vs. HS: 1.6 ± 0.5, P < 0.05). The reduced plasma arginine concentration with increased plasma ornithine concentration and urea excretion during LS indicates increased arginine metabolism by arginase. This cannot be ascribed to changes in hepatic arginase expression but may be a consequence of increased hepatic arginine uptake via CAT2A.


2003 ◽  
Vol 284 (6) ◽  
pp. H2302-H2310 ◽  
Author(s):  
Frédéric Jacob ◽  
Pilar Ariza ◽  
John W. Osborn

The present study was designed to test the hypothesis that renal nerves chronically modulate arterial pressure (AP) under basal conditions and during changes in dietary salt intake. To test this hypothesis, continuous telemetric recording of AP in intact (sham) and renal denervated (RDNX) Sprague-Dawley rats was performed and the effect of increasing and decreasing dietary salt intake on AP was determined. In protocol 1, 24-h AP, sodium, and water balances were measured in RDNX ( n = 11) and sham ( n = 9) rats during 5 days of normal (0.4% NaCl) and 10 days of high (4.0% NaCl) salt intake, followed by a 3-day recovery period (0.4% NaCl). Protocol 2 was similar with the exception that salt intake was decreased to 0.04% NaCl for 10 days after the 5-day period of normal salt (0.04% NaCl) intake (RDNX; n = 6, sham; n = 5). In protocol 1, AP was lower in RDNX (91 ± 1 mmHg) compared with sham (101 ± 2 mmHg) rats during the 5-day 0.4% NaCl control period. During the 10 days of high salt intake, AP increased <5 mmHg in both groups so that the difference between sham and RDNX rats remained constant. In protocol 2, AP was also lower in RDNX (93 ± 2 mmHg) compared with sham (105 ± 4 mmHg) rats during the 5-day 0.4% NaCl control period, and AP did not change in response to 10 days of a low-salt diet in either group. Overall, there were no between-group differences in sodium or water balance in either protocol. We conclude that renal nerves support basal levels of AP, irrespective of dietary sodium intake in normal rats.


2021 ◽  
Author(s):  
Zengliang Ruan ◽  
Jianxin Li ◽  
Fangchao Liu ◽  
Jie Cao ◽  
Shufeng Chen ◽  
...  

AbstractHigh sodium intake has been recognized as an important risk factor for hypertension, but the role of gut microbiota composition and metabolomic profiles in the association between dietary sodium intake and blood pressure (BP) is uncertain. The metabolome, microbiome, and dietary salt intervention study (MetaSalt) study was conducted to investigate whether low- and high-dietary sodium intake influences BP by changing the microbial and metabolomic profiles. This is a family-based, multicentre intervention study conducted in four rural field-centres across three provinces in rural Northern China. Probands with untreated prehypertension or stage-1 hypertension were identified through a community-based BP screening, and their family members included siblings, offspring, spouses and parents were subsequently included. During the dietary intervention, low-salt and high-salt diets were provided free of charge to all participants. A total of 529 participants in four field centres were included in our study, with a mean age of 48.1 years old, and about 36.7% of them were male, 76.5% had a middle school (69.5%) or higher (7.0%) diploma, 23.4% had a history of smoke, 24.4% were current drinkers. The mean systolic and diastolic BP levels in the baseline were 129.54 mm Hg and 81.02 mm Hg for all participants, and significantly decreased during the low-salt intervention and increased during the high-salt intervention. Our study is well placed to check the impacts of dietary sodium intake on microbial and metabolomic profiles, which will have important implications for discovering the mechanisms in the development of hypertension and subsequent cardiovascular disease.


1993 ◽  
Vol 264 (6) ◽  
pp. H1810-H1816 ◽  
Author(s):  
M. A. Boegehold

This study evaluated the influence of high dietary salt intake on nitric oxide (NO) activity in the arteriolar network of rats resistant to salt-induced hypertension. The spinotrapezius muscle microvasculature was studied in inbred Dahl salt-resistant (SR/Jr) rats fed low (0.45%)- or high (7%)-salt diets for 4–5 wk. Arterial pressures were not different between groups at any time during the study. NO synthesis inhibition with NG-nitro-L-arginine-methyl ester (L-NAME) constricted arcade arterioles in low-salt SR/Jr and dilated arcade arterioles in high-salt SR/Jr. Arcade arteriole dilation to acetylcholine (ACh), but not sodium nitroprusside (SNP), was impaired in high-salt SR/Jr. In contrast, transverse and distal arteriole responses to L-NAME, ACh, and SNP were identical in high- and low-salt SR/Jr. These findings indicate that high salt intake, in the absence of increased arterial pressure, suppresses the influence of basal and evoked NO on vascular tone in arcading arterioles, but not in smaller transverse and distal arterioles. Unaltered SNP responses in high-salt SR/Jr suggest that this effect does not involve a change in arteriolar smooth muscle responsiveness to NO.


Sign in / Sign up

Export Citation Format

Share Document