scholarly journals Daratumumab plus CyBorD for patients with newly diagnosed light chain (AL) amyloidosis

2021 ◽  
Vol 12 ◽  
pp. 204062072110583
Author(s):  
Foteini Theodorakakou ◽  
Meletios A. Dimopoulos ◽  
Efstathios Kastritis

Primary systemic immunoglobulin light chain (AL) amyloidosis is caused by a plasma cell clone of, usually low, malignant potential that expresses CD38 molecules on their surface. Treatment of AL amyloidosis is based on the elimination of the plasma cell clone. The combination of cyclophosphamide–bortezomib–dexamethasone (CyBorD) is the most widely used and is considered a standard of care; however, complete hematologic response rates and organ response rates remain unsatisfactory. Daratumumab, an anti-CD38 monoclonal antibody, has demonstrated encouraging results, with rapid and deep responses, in patients with relapsed or refractory AL amyloidosis as monotherapy with a favorable toxicity profile. The large phase-III, randomized, ANDROMEDA study evaluated the addition of daratumumab to CyBorD in previously untreated patients with AL amyloidosis and demonstrated that addition of daratumumab can substantially improve hematologic complete response rates, survival free from major organ deterioration or hematologic progression, and organ responses. In this review, we discuss the role of daratumumab in the treatment of AL amyloidosis, its mechanism of action, and the results of ANDROMEDA study that led to the first approved therapy for AL amyloidosis.

Cells ◽  
2021 ◽  
Vol 10 (3) ◽  
pp. 545
Author(s):  
Giovanni Palladini ◽  
Paolo Milani ◽  
Fabio Malavasi ◽  
Giampaolo Merlini

Systemic light-chain (AL) amyloidosis is caused by a small B cell, most commonly a plasma cell (PC), clone that produces toxic light chains (LC) that cause organ dysfunction and deposits in tissues. Due to the production of amyloidogenic, misfolded LC, AL PCs display peculiar biologic features. The small, indolent plasma cell clone is an ideal target for anti-CD38 immunotherapy. A recent phase III randomized study showed that in newly diagnosed patients, the addition of daratumumab to the standard of care increased the rate and depth of the hematologic response and granted more frequent organ responses. In the relapsed/refractory setting, daratumumab alone or as part of combination regimens gave very promising results. It is likely that daratumumab-based regimens will become new standards of care in AL amyloidosis. Another anti-CD38 monoclonal antibody, isatuximab, is at an earlier stage of development as a treatment for AL amyloidosis. The ability to target CD38 on the amyloid PC offers new powerful tools to treat AL amyloidosis. Future studies should define the preferable agents to combine with daratumumab upfront and in the rescue setting and assess the role of maintenance. In this review, we summarize the rationale for using anti-CD38 antibodies in the treatment of AL amyloidosis.


2020 ◽  
Vol 143 (4) ◽  
pp. 365-372
Author(s):  
Paolo Milani ◽  
Giovanni Palladini

The vast majority of patients with light-chain (AL) amyloidosis are not eligible for stem cell transplant and are treated with conventional chemotherapy. Conventional regimens are based on various combinations of dexamethasone, alkylating agents, proteasome inhibitors, and immunomodulatory drugs. The choice of these regimens requires a careful risk stratification, based on the extent of amyloid organ involvement, comorbidities, and the characteristics of the amyloidogenic plasma cell clone. Most patients are treated upfront with bortezomib and dexamethasone combined with cyclophosphamide or melphalan. Cyclophosphamide does not compromise stem cell mobilization and harvest and is more manageable in renal failure. Melphalan can overcome the effect of t(11;14), which is associated with lower response rates and shorter survival in subjects treated with bortezomib and dexamethasone, or in combination with cyclophosphamide. Lenalidomide and pomalidomide are the mainstay of rescue treatment. They are effective in patients exposed to bortezomib, dexamethasone, and alkylators, but deep hematologic responses are rare. Ixazomib, alone or in combination with lenalidomide, increases the rate of complete responses in relapsed/refractory patients. Conventional chemotherapy regimens will represent the backbone for future combinations, particularly with anti-plasma-cell immunotherapy, that will further improve response rates and outcomes.


2020 ◽  
Vol 143 (4) ◽  
pp. 373-380
Author(s):  
Layla Van Doren ◽  
Suzanne Lentzsch

Immunoglobulin light chain amyloidosis (AL amyloidosis) is a rare, life-threatening disease characterized by the deposition of misfolded proteins in vital organs such as the heart, the lungs, the kidneys, the peripheral nervous system, and the gastrointestinal tract. This causes a direct toxic effect, eventually leading to organ failure. The underlying B-cell lymphoproliferative disorder is almost always a clonal plasma cell disorder, most often a small plasma cell clone of <10%. Current therapy is directed toward elimination of the plasma cell clone with the goal of preventing further organ damage and reversal of the existing organ damage. Autologous stem cell transplantation has been shown to be a very effective treatment in patients with AL amyloidosis, although it cannot be widely applied as patients are often frail at presentation, making them ineligible for transplantation. Treatment with cyclophosphamide, bortezomib, and dexamethasone has emerged as the standard of care for the treatment of AL amyloidosis. Novel anti-plasma cell therapies, such as second generation proteasome inhibitors, immunomodulators, monoclonal antibodies targeting a surface protein on the plasma cell (daratumumab, elotuzumab), and the small molecular inhibitor venetoclax, have continued to emerge and are being evaluated in combination with the standard of care. However, there is still a need for therapies that directly target the amyloid fibrils and reverse organ damage. In this review, we will discuss current and emerging nonchemotherapy treatments of AL amyloidosis, including antifibril directed therapies under current investigation.


2021 ◽  
Vol 11 (2) ◽  
Author(s):  
Giovanni Palladini ◽  
Bruno Paiva ◽  
Ashutosh Wechalekar ◽  
Margherita Massa ◽  
Paolo Milani ◽  
...  

AbstractLight chain (AL) amyloidosis is caused by a small B-cell clone producing light chains that form amyloid deposits and cause organ dysfunction. Chemotherapy aims at suppressing the production of the toxic light chain (LC) and restore organ function. However, even complete hematologic response (CR), defined as negative serum and urine immunofixation and normalized free LC ratio, does not always translate into organ response. Next-generation flow (NGF) cytometry is used to detect minimal residual disease (MRD) in multiple myeloma. We evaluated MRD by NGF in 92 AL amyloidosis patients in CR. Fifty-four percent had persistent MRD (median 0.03% abnormal plasma cells). There were no differences in baseline clinical variables in patients with or without detectable MRD. Undetectable MRD was associated with higher rates of renal (90% vs 62%, p = 0.006) and cardiac response (95% vs 75%, p = 0.023). Hematologic progression was more frequent in MRD positive (0 vs 25% at 1 year, p = 0.001). Altogether, NGF can detect MRD in approximately half the AL amyloidosis patients in CR, and persistent MRD can explain persistent organ dysfunction. Thus, this study supports testing MRD in CR patients, especially if not accompanied by organ response. In case MRD persists, further treatment could be considered, carefully balancing residual organ damage, patient frailty, and possible toxicity.


2019 ◽  
Vol 141 (2) ◽  
pp. 93-106 ◽  
Author(s):  
Iuliana Vaxman ◽  
Morie Gertz

The term amyloidosis refers to a group of disorders in which protein fibrils accumulate in certain organs, disrupt their tissue architecture, and impair the function of the effected organ. The clinical manifestations and prognosis vary widely depending on the specific type of the affected protein. Immunoglobulin light-chain (AL) amyloidosis is the most common form of systemic amyloidosis, characterized by deposition of a misfolded monoclonal light-chain that is secreted from a plasma cell clone. Demonstrating amyloid deposits in a tissue biopsy stained with Congo red is mandatory for the diagnosis. Novel agents (proteasome inhibitors, immunomodulatory drugs, monoclonal antibodies, venetoclax) and autologous stem cell transplantation, used for eliminating the underlying plasma cell clone, have improved the outcome for low- and intermediate-risk patients, but the prognosis for high-risk patients is still grave. Randomized studies evaluating antibodies that target the amyloid deposits (PRONTO, VITAL) were recently stopped due to futility and currently there is an intensive search for novel treatment approaches to AL amyloidosis. Early diagnosis is of paramount importance for effective treatment and prognosis, due to the progressive nature of this disease.


Blood ◽  
2012 ◽  
Vol 120 (21) ◽  
pp. 5036-5036 ◽  
Author(s):  
Beihui Huang ◽  
Juan Li ◽  
Junru Liu ◽  
Dong Zheng ◽  
Mei Chen ◽  
...  

Abstract Abstract 5036 Objective: To assess the efficacy and tolerability of bortezomib with dexamethasone for patients with primary systemic light chain (AL) amyloidosis or multiple myeloma-associated AL amyloidosis. Methods: Twelve newly diagnosed patients with primary systemic AL amyloidosis and six patient with multiple myeloma-associated AL amyloidosis were treated with a combination of bortezomib (1. 3 mg/m2 d1, 4, 8, 11) and dexamethasone (20 mg d1–4). Results: Sixteen patients was evaluable. 12/16 had a hematologic response and 6/16 (37. 5%) a hematologic complete response. Median cycles to response was 1 cycle and median cycles to best response was 2 cycles. In patients with primary AL amyloidosis, 8/10 (80. 0%) had a hematologic response and 5/10 (50. 0%) a hematologic complete response. In patients with myeloma-associated AL amyloidosis, 7/10 (70. 0%) had a hematologic response and 1/6 (16. 7%) a hematologic complete response. Twelve patients (75. 0%) had a response in at least one affected organ, in which 7 in patients with primary AL amyloidosis and 5 in myeloma-associated AL amyloidosis. Person correlation between hematologic response and organ response was 0. 667 (p=0. 005). Fatigue, diarrhea and infection were the most frequent side effects. Three patients developed herpes zoster and had to stop chemotherapy. Conclusions: VD produces rapid and high hematological responses in the majority of patients with newly diagnosed AL regardless of primary or associated with myeloma. It is well tolerated with few side effects. This treatment may be a valid option as first-line treatment for newly diagnosed patients with primary systemic AL amyloidosis and multiple myeloma-associated AL amyloidosis. Disclosures: No relevant conflicts of interest to declare.


2020 ◽  
Vol 38 (28) ◽  
pp. 3252-3260 ◽  
Author(s):  
Efstathios Kastritis ◽  
Xavier Leleu ◽  
Bertrand Arnulf ◽  
Elena Zamagni ◽  
María Teresa Cibeira ◽  
...  

PURPOSE Oral melphalan and dexamethasone (MDex) were considered a standard of care in light-chain (AL) amyloidosis. In the past decade, bortezomib has been increasingly used in combination with alkylating agents and dexamethasone. We prospectively compared the efficacy and safety of MDex and MDex with the addition of bortezomib (BMDex). METHODS This was a phase III, multicenter, randomized, open-label trial. Patients were stratified according to cardiac stage. Patients with advanced cardiac stage (stage IIIb) amyloidosis were not eligible. The primary end point was hematologic response rate at 3 months. This trial is registered with ClinicalTrials.gov identifier NCT01277016 . RESULTS A total of 109 patients, 53 in the BMDex and 56 in the MDex group, received ≥ 1 dose of therapy (from January 2011 to February 2016). Hematologic response rate at 3 months was higher in the BMDex arm (79% v 52%; P = .002). Higher rates of very good partial or complete response rates (64% v 39%; hazard ratio [HR], 2.47; 95% CI, 1.30 to 4.71) and improved overall survival, with a 2-fold decrease in mortality rate (HR, 0.50; 95% CI, 0.27 to 0.90), were observed in the BMDex arm. Grade 3 and 4 adverse events (the most common being cytopenia, peripheral neuropathy, and heart failure) were more common in the BMDex arm, occurring in 20% versus 10% of cycles performed. CONCLUSION BMDex improved hematologic response rate and overall survival. To our knowledge, this is the first time a controlled study has demonstrated a survival advantage in AL amyloidosis. BMDex should be considered a new standard of care for AL amyloidosis.


Blood ◽  
2008 ◽  
Vol 111 (2) ◽  
pp. 549-557 ◽  
Author(s):  
Ping Zhou ◽  
Julie Teruya-Feldstein ◽  
Ping Lu ◽  
Martin Fleisher ◽  
Adam Olshen ◽  
...  

In high doses with stem-cell transplantation, melphalan is an effective but toxic therapy for patients with systemic light-chain (AL-) amyloidosis, a protein deposition and monoclonal plasma cell disease. Melphalan can eliminate the indolent clonal plasma cells that cause the disease, an achievement called a complete response. Such a response is usually associated with extended survival, while no response (a less than 50% reduction) is not. Gene-expression studies and a stringently supervised analysis identified calreticulin as having significantly higher expression in the pretreatment plasma cells of patients with systemic AL-amyloidosis who then had a complete response to high-dose melphalan. Calreticulin is a pleiotropic calcium-binding protein found in the endoplasmic reticulum and the nucleus whose overexpression is associated with increased sensitivity to apoptotic stimuli. Real-time PCR and immunohistochemical staining also showed that expression of calreticulin was higher in the plasma cells of those with a complete response. Furthermore, wild-type murine embryonic fibroblasts were significantly more sensitive to melphalan than calreticulin knock-out murine embryonic fibroblasts. These data have important implications for understanding the activity of melphalan in plasma-cell diseases and support further investigation of calreticulin and its modulation in patients with systemic AL-amyloidosis receiving high-dose melphalan.


2018 ◽  
Vol 10 (1) ◽  
pp. e2018022 ◽  
Author(s):  
Paolo Milani ◽  
Giampaolo Merlini ◽  
Giovanni Palladini

Light chain (AL) amyloidosis is caused by a usually small plasma-cell clone that is able to produce the amyloidogenic lights chains. They are able to misfold and aggregate, deposit in tissues in the form of amyloid fibrils and lead to irreversible organ dysfunction and eventually death if treatment is late or ineffective. Cardiac damage is the most important prognostic determinant. The risk of dialysis is predicted by the severity of renal involvement, defined by the baseline proteinuria and glomerular filtration rate, and by response to therapy. The specific treatment is chemotherapy targeting the underlying plasma-cell clone. This needs be risk adapted, according to the severity of cardiac and/or multi-organ involvement. Autologous stem cell transplant (preceded by induction and/or followed by consolidation with bortezomib-based regimens) can be considered for low-risk patients (~20%). Bortezomib combined with alkylators is used in the majority of intermediate-risk patients, and with possible dose escalation in high-risk subjects. Novel, powerful anti-plasma cell agents were investigated in the relapsed/refractory setting, and are being moved to upfront therapy in clinical trials. In addition, the use of novel approaches based on antibodies targeting the amyloid deposits or small molecules interfering with the amyloidogenic process gave promising results in preliminary studies. Some of them are under evaluation in controlled trials. These molecules will probably add powerful complements to standard chemotherapy. The understanding of the specific molecular mechanisms of cardiac damage and the characteristics of the amyloidogenic clone are unveiling novel potential treatment approaches, moving towards a cure for this dreadful disease.


2020 ◽  
Vol 4 (5) ◽  
pp. 880-884 ◽  
Author(s):  
Andrew Staron ◽  
Eric J. Burks ◽  
John C. Lee ◽  
Shayna Sarosiek ◽  
J. Mark Sloan ◽  
...  

Abstract Despite achieving a hematologic complete response after treatment, many patients with AL amyloidosis do not attain recovery of organ function and/or experience hematologic relapse. A persistent plasma cell clone producing amyloidogenic light chains at levels below the detection threshold of traditional serologic methods is hypothesized to impede organ response in some patients. Assessment of minimal residual disease (MRD) may therefore have clinical importance as a more stringent treatment response tool for patients in a hematologic complete response. We used 2-tube, 10-color combination multiparametric flow cytometry to assess for MRD at a minimum sensitivity of 1 in 105 nucleated cells. Of 65 patients in hematologic complete response, 36 (55%) were found to have a residual clonal plasma cell population in the bone marrow. Comparing the MRD-negative and MRD-positive groups, renal response was observed in 88% vs 64% (P = .06), cardiac response in 75% vs 59% (P = .45), and any organ response in 90% vs 75% (P = .20) of patients. Depth of organ response as measured by the percent decrease in 24-hour proteinuria and brain natriuretic peptide was 96% vs 91% (P = .16) and 55% vs 46% (P = .66), respectively. These data suggest a possible correlation between MRD negativity and higher probability of organ response after treatment in AL amyloidosis. Future prospective studies with a larger cohort are needed to determine the clinical relevance of these improvements. This trial was registered at www.clinicaltrials.gov as #NCT00898235.


Sign in / Sign up

Export Citation Format

Share Document