The Impact of Age and Gender on Hematopoietic Stem Cells and Immune Contexture of the Bone Marrow Microenvironment

2020 ◽  
pp. 1-6
Author(s):  
Rebar N. Mohammed

Hematopoietic stem cells (HSCs) are a rare population of cells that reside mainly in the bone marrow and are capable of generating and fulfilling the entire hematopoietic system upon differentiation. Thirty-six healthy donors, attending the HSCT center to donate their bone marrow, were categorized according to their age into child (0–12 years), adolescence (13–18 years), and adult (19–59 years) groups, and gender into male and female groups. Then, the absolute number of HSCs and mature immune cells in their harvested bone marrow was investigated. Here, we report that the absolute cell number can vary considerably based on the age of the healthy donor, and the number of both HSCs and immune cells declines with advancing age. The gender of the donor (male or female) did not have any impact on the number of the HSCs and immune cells in the bone marrow. In conclusion, since the number of HSCs plays a pivotal role in the clinical outcome of allogeneic HSC transplantations, identifying a younger donor regardless the gender is critical.

Blood ◽  
2004 ◽  
Vol 104 (11) ◽  
pp. 2775-2775
Author(s):  
Claude Capron ◽  
Catherine Lacout ◽  
Yann Lecluse ◽  
Isabelle Poullion ◽  
Fedor Svinarchouk ◽  
...  

Abstract The hematopoietic stem cells (HSC) have the ability to self-renew and to give rise to all blood lineages. These processes occur via a hierarchy of progenitors with progressively more limited differentiation and self-renewal potential and are orchestrated by specialized protein such as transcription factors. LYL-1 protein contains a basic helix-loop-helix DNA binding motif also found in several proteins involved in the control of cellular proliferation and differentiation such as SCL/TAL-1. As LYL-1 shares an 80% homology at the protein level with SCL/TAL-1, we wanted to determine the function of LYL-1 in hematopoiesis and particularly on HSC. For this study, we used knock in lyl-1−/− mice in which exon 4 was replaced by LacZ/Neo cassette. Lyl−/− mice are viable and have normal blood cell counts as well as a normal marrow cellularity. In addition, using a hematopoietic colony forming cells (CFCs) assay, no significant difference was seen in the myeloid CFCs of either lyl-1−/− or lyl-1+/+ BM and FL cells except a 2-fold increase in the absolute number of BFU-E in lyl-1−/− FL as compared to lyl-1+/+ FL. We analyzed more primitive progenitors in details because using Fluorecein Di-beta Galactopyranoside (FDG)-staining assay, we showed that lyl-1 is mainly expressed in primitive Lin− Sca-1+ c-Kit+ cells (LSK) cells from either BM or FL (91 ± 7% and 78 ± 5% of FDG positive cells in lyl-1−/− BM and FL LSK cells, respectively). In addition, analysis of lyl-1−/− and lyl-1+/+ cells revealed a 1.8-fold and 2-fold decrease in the percentage of primitive LSK in BM and FL, respectively, as compared to wild type cells. Furthermore, using the Hoechst 33342 efflux assay, we noticed a significant decrease in the absolute number of more primitive LSK-SP (side population) cells in lyl-1−/− BM as compared to lyl-1+/+ BM cells (52800 ± 5412 cells/femur versus 91080 ± 8475 cells/femur, respectively) suggesting an important role of LYL-1 in the HSC function. In order to confirm this hypothesis, in vivo assays were performed. We observed a 1.5-fold decrease in the lyl-1−/− BM and FL day 12 CFU-S content as compared to lyl-1+/+ cells. Adoptive transfer experiments were subsequently performed using lethally irradiated Ly5.1 mice. Data showed that lyl-1−/− cells from either BM or FL displayed a hematopoietic reconstitution defect in competitive repopulation assays. Indeed, Ly5.1 recipients were injected with a mixture of 5x106 (5:1), 106 (1:1) or 0.5x106 (0.5:1) lyl-1−/− or lyl-1+/+ Ly5.2 expressing cells and 106 competitive BM Ly5.1 expressing cells. All hosts engrafted with lyl-1−/− BM cells shown a significant reduced levels of chimerism (% of circulating Ly5.2+ cells) as compared to hosts engrafted with lyl-1+/+ BM donors (4.3 ± 2.8% (5:1); 7.5 ± 5.5% (1:1); 0.6 ± 0.3% (0.5:1) in lyl-1−/− BM cells versus 66 ± 8% (5:1); 52 ± 9% (1:1); 53 ± 10% (0.5:1) in lyl-1+/+ BM cells) and similar difference was observed with FL donors (45 ± 2% (5:1); 25 ± 5% (1:1); 11 ± 5% (0.5:1) in lyl-1−/− FL cells versus 83 ± 1% (5:1); 70 ± 3% (1:1); 53 ± 6% (0.5:1) in lyl-1+/+ FL cells). This altered defect in HSC was also confirmed using LTC-IC in vitro experiments. Altogether, our results demonstrate an important role of the transcription factor LYL-1 on the maintenance of HSC properties.


Blood ◽  
2015 ◽  
Vol 126 (23) ◽  
pp. 5406-5406
Author(s):  
Stephanie Schaefer ◽  
Juliane Werner ◽  
Sandra Lange ◽  
Katja Neumann ◽  
Christoph Machka ◽  
...  

Abstract Introduction: Direct intra bonemarrow (IBM) infusion of hematopoietic stem cells (HSC) is assumed to improve the homing efficiency and to accelerate the early engraftment in comparison to the conventional intravenous application of HSC. Especially for transplantation of low cell numbers i.e. "weak grafts" that is generally associated with delayed engraftment. The direct infusion of HSC in close proximity to the HSC niche by intra bone marrow transplantation (IBMT) might be a promising way. Whether the HSC infusion rate might influence the homing process and therefore the outcome after IBMT is so far unknown. Aims: Herein, we analyzed in a canine DLA-identical littermate model the impact of different graft infusion rates on the hematopoietic recovery as well as on the engraftment kinetics after IBMT following reduced intensity conditioning. Methods: Recipient dogs received IBMT following a 4.5 Gy total body irradiation (TBI). From day (d) -1 until d+35 Cyclosporin A (15mg/kg) was administered orally twice a day as immunosuppression. For IBM transfusion the graft volume was reduced by buffy coat centrifugation and dogs obtained 2x25 ml simultaneously into the humerus and femur. The infusion rate of the graft was 25ml/10 min in group 1 (IBM10, n = 8) and 25 ml/60 min in group 2 (IBM60, n = 7). A 28 day follow-up is currently available for twelve dogs (IBM10 n = 7; IBM60 n = 5). The development of the peripheral blood mononuclear cell (PBMC) and granulocyte chimerism was tested weekly. Blood count, kidney and liver enzymes were monitored routinely. Results: All animals engrafted. One dog of the IBM10 group died at d+15 (infection) and was therefore not included into analysis. The median number of infused total nucleated cells were in IBM10 4.1*108/kg (range 2.3-6.0*108/kg) and in IBM60 3.2*108/kg (range 1.8-4.4*108/kg; p=0.4). The infused CD34+ numbers were median 3.2*106/kg (range: 1.2-10.0*106/kg; IBM10) and 3.6*106/kg (range: 1.5-6.8*106/kg; IBM60; p=0.7). Time of leukocyte recovery was median d+11 after IBMT in both groups (range: d+4 to d+11, IBM10; d+8 to d+14, IBM60; p= 0.5). Median leukocytes nadirs amounted to 0.2*109/l for IBM10 and 0.3*109/l for IBM60 (p= 0.08). The median duration of leukopenia (<1*109/l) were similar (6d, range: 4-11d, IBM10; 3-9d, IBM60) (p= 0.6). Median platelet nadir was 0*109/l for both cohorts (range: 0.0-7.0*109/l, IBM10; 0.0-1.0*109/l, IBM60). The period of thrombocytopenia (≤20.0*109/l) was significantly prolonged in the IBM60 group (median 10d, range) compared to 5d (range: 3-12d) in the IBM10 group (p=0.05). Donor PBMC chimerisms at d+7, d+14 and d+28 were median 22% (range: 8-34%), 50% (range: 29-53%) and 67% (range: 47-73%) in IBM10. The results of PBMC chimerism for IBM60 were 11% (range: 5-34%), 42% (range: 20-42%) and 59% (range: 44-66%) at these time points (p = n.s.). Donor granulocyte chimerisms of median 33% (range: 11-83%), 100% (range: 58-100%) and 100% (range: 82-100%) were detected at d+7, d+14 and d+28 after HSCT in IBM10, respectively. The granulocyte chimerism in IBM60 amounted to 34% (range: 3-87%), 96% (range: 94-100%) and 98% (range: 96-100%) at the above mentioned time points p=n.s. for all time points). Conclusion: Our data suggest that early granulocyte and PBMC engraftment is not influenced by modification of the HSC infusion rate. However, the period of thrombocytopenia seems to be prolonged following a 60 minutes application. Therefore, longer infusion times in an IBMT setting seem not to be beneficial following toxicity reduced conditioning regimen. Disclosures No relevant conflicts of interest to declare.


Blood ◽  
1993 ◽  
Vol 82 (2) ◽  
pp. 445-455 ◽  
Author(s):  
DM Bodine ◽  
NE Seidel ◽  
KM Zsebo ◽  
D Orlic

We have examined the effects of administration of stem cell-factor (SCF) on the number and distribution of pluripotent hematopoietic stem cells (PHSC) in normal mice. Using the competitive repopulation assay we found that in vivo administration of SCF increases the absolute number of PHSC per mouse threefold. The increased numbers of PHSC are found in the peripheral blood and spleen of the SCF-treated animals. The spleen and peripheral blood stem cells completely repopulated the erythroid, myeloid, and lymphoid lineages of irradiated or W/Wv hosts, similar to bone marrow PHSC. PHSC from the peripheral blood of SCF- treated mice have a lineage marker-negative, c-kit-positive phenotype that is indistinguishable from that of bone marrow PHSC. The increase in the absolute number of spleen PHSC is associated with efficient gene transfer to these cells without prior treatment with 5-fluorouracil. This is a US government work. There are no restrictions on its use.


Blood ◽  
2015 ◽  
Vol 126 (23) ◽  
pp. 1174-1174
Author(s):  
Darlene Monlish ◽  
Angela Herman ◽  
Molly Romine ◽  
Sima Bhatt ◽  
Laura G. Schuettpelz

Abstract Toll like receptors (TLRs) are a family of pattern recognition receptors (PRRs) that shape the innate immune system by identifying foreign pathogen-associated molecular patterns (PAMPS) and host-derived damage associated patterns (DAMPS). TLRs are widely expressed on both immune cells and non-immune cells, including hematopoietic stem and progenitor cells (HSPCs). Of clinical significance, both lymphoproliferative and myelodysplastic syndromes have been linked to aberrant TLR signaling (Schuettpelz, et al., Front Immunol 2013; Varney, et al., Exp Hematol 2015). Despite extensive studies focused on the influence of TLRs through committed effector cell populations, more recent evidence suggests that these PRRs may elicit immune regulation from the more primitive level of hematopoietic stem cells (HSCs). As TLR2 is expressed on HSCs, in the present study, we sought to elucidate the effect of TLR2 signaling on HSCs, and determine the cell-autonomous versus non-autonomous effects of this signaling. To this end, we utilized the synthetic TLR2 agonist, PAM3CSK4, to assess the effects of augmented TLR2 signaling on HSC mobilization, function, cycling, and differentiation. In previous studies, we found that TLR2 is not required for HSC function (Schuettpelz et al., Leukemia 2014); however, in the present study, treatment of wild-type mice with PAM3CSK4 led to HSC expansion in both the bone marrow and spleen, and a reduction in bone marrow megakaryocyte-erythroid progenitors (MEPs). Further, we observed increased HSC cycling and loss of function in competitive bone marrow transplantation assays in response to TLR2 agonist exposure. Treatment of chimeric animals (Tlr2-/- + Tlr2+/+ bone marrow transplanted into Tlr2+/+ or Tlr2-/- recipients) showed that these effects are largely cell non-autonomous, with a minor contribution from cell-autonomous TLR2 signaling. Analysis of serum, bone marrow, and spleen samples by cytokine expression arrays revealed an increase in G-CSF (serum) and TNFα (bone marrow) following TLR2 agonist treatment in wild-type mice. To further characterize the influence of these cytokines, respective receptor knockout models were employed. Inhibition of G-CSF enhanced HSC bone marrow expansion in response to PAM3CSK4, but partially rescued the expansion of spleen HSPCs. Likewise, loss of TNFa partially mitigated the expansion of spleen HSPCs in response to PAM3CSK4, and abrogated the PAM3CSK4-induced spleen HSC cycling. Further, we observed that loss of TNFa rescued the PAM3CSK4-mediated loss of bone marrow MEPs. Taken together, these data suggest that TLR2 signaling affects HSCs via both cell cell-autonomous and non-autonomous cues, with G-CSF and TNFa contributing to TLR2 agonist-mediated effects on HSC cycling, mobilization, and function. Ongoing studies aim to determine the particular cell types that are crucial for mediating the effects of TLR2 signaling on HSCs and elucidate the role of this pathway on HSCs in myelodysplastic syndrome (MDS) pathogenesis and other hematologic malignancies. Disclosures No relevant conflicts of interest to declare.


Blood ◽  
2019 ◽  
Vol 134 (Supplement_1) ◽  
pp. SCI-1-SCI-1
Author(s):  
Hitoshi Takizawa

Adult bone marrow (BM) had been long thought to be an immune-privileged organ where little immune reactions occur upon immunological challenges, and thus to form an advantageous environment to preserve long-lived hematopoietic and immune cells, e.g., hematopoietic stem cells (HSCs) that maintain lifelong hematopoiesis. They are mostly kept in quiescence, i.e., very slowly dividing within the steady state BM microenvironment, often referred to as niche, which consists of various type of non-hematopoietic cells such as endothelial cells, mesenchymal stromal cells1. In contrast, recent studies have suggested that a broad range of immunological and inflammatory responses occur in BM and largely influence HSC function2. Upon hematopoietic challenges, e.g., infection, inflammation, cancer, both HSCs and the surrounding niche cells can sense hematopoietic demand signals and integrate it to hematopoiesis via direct (HSC-mediated) and indirect (niche-mediated) sensing mechanisms. As a consequence, primitive HSC and their differentiated progenitors (HSPCs) migrate to inflamed organs, proliferate and differentiate into specific cell lineages that are locally consumed and to be replenished. Infection is one of hemato-immunological challenges that are highly conserved in evolution and relevant to pathogenesis of many diseases, e.g., cancer. Host defense against infection is initiated by rapid but relatively non-specific responses that involve innate immune effector cells, e.g., macrophages, granulocytes, and then is followed by slower but specific responses that involve acquired immunity. Recent studies have shown that not only immune cells but also HSPCs express innate immune sensors, such as Toll-like receptors (TLRs), and the ligation of receptors results in secretion of pro-inflammatory cytokines, cell migration, proliferation and differentiation into myeloid lineage cells (King, Nat Rev Immunol 2016). We have also shown that systemic infection of gram negative bacterial activates quiescent HSCs to proliferation through its cognate receptor, TLR4, and eventually impairs their hematopoietic repopulating ability3. More recently, we have found that intestinal tissue damage activates early hematopoiesis in BM via microbial signals and direct early HSPCs to inflamed lymph node to produce myeloid cells and promote tissue repair. Given the fact that innate immune cells are epigenetically programmed with innate immune memory upon sensitization ("training") infection to resist future infectious insults4, and that HSPCs are long-lived and immune-responsive, it has been demonstrated that upon exposure to pathogen, HSPCs also are able to memorize infection through metabolic and epigenetic changes, and build hemato-immune system with better protection to subsequent pathogen insults5. Taken together, these findings define the BM not as an immune-privileged reservoir, but rather as an organ of active immune reactions where immature HSPCs are capable of adapting the demand signal to hematopoiesis in response to hemato-immunological challenges, and of being trained by innate immune activation to reconstitute host defense with more resistance against future infection. Morrison SJ, Scadden DT. The bone marrow niche for haematopoietic stem cells. Nature. 2014 Jan 16;505(7483):327-34 Takizawa H, Boettcher S, Manz MG. Demand-adapted regulation of early hematopoiesis in infection and inflammation.Blood. 2012 Mar 29;119(13):2991-3002. Takizawa H, Fritsch K, Kovtonyuk LV, et al. Pathogen-Induced TLR4-TRIF Innate Immune Signaling in Hematopoietic Stem Cells Promotes Proliferation but Reduces Competitive Fitness.Cell Stem Cell. 2017 Aug 3;21(2):225-240.e5. Netea MG, Joosten LA, Latz E, et al. Trained immunity: A program of innate immune memory in health and disease.Science. 2016 Apr 22;352(6284):aaf1098. Kopf M, Nielsen PJ. Training myeloid precursors with fungi, bacteria and chips. Nat Immunol. 2018 Apr;19(4):320-322. Disclosures No relevant conflicts of interest to declare.


Blood ◽  
2011 ◽  
Vol 118 (21) ◽  
pp. 2351-2351
Author(s):  
Alexander M. de Bruin ◽  
Berend Hooibrink ◽  
Martijn A. Nolte

Abstract Abstract 2351 Regulation of hematopoiesis during stress situations, such as bacterial or viral infections, is crucial for the maintenance of sufficient numbers of cells in the blood. It has become clear that activated immune cells provide such feedback signals to the bone marrow. An important mediator in this respect is the pro-inflammatory cytokine Interferon-gamma (IFNγ), which is produced in the bone marrow by activated T cells during the course of an infection. As such, we have previously shown that T cell-derived IFNγ can directly influence the output of myeloid and erythroid cells. To address whether IFNγ can also influence the function of hematopoietic stem cells (HSCs), we cultured highly purified HSCs from murine bone marrow with or without IFNγ and found that IFNγ strongly reduced the absolute number of HSCs in these cultures, both phenotypically and functionally. We confirmed that the functional impact of IFNγ was due to a direct effect on HSCs and not mediated by more differentiated progenitors. In addition, IFNγ does not directly influence the quiescent state of purified HSC, nor their cell cycle entry. By labeling HSCs with CFSE, we found that IFNγ reduces HSC expansion in vitro by decreasing their proliferative capacity, but not their ability to differentiate. To investigate the impact of IFNγ on HSCs in vivo, we infected WT and IFNγ−/− mice with lymphocytic choriomeningitis virus (LCMV) and found that IFNγ severely impaired HSC recovery upon infection. Finally, to exclude indirect effects of IFNγ on other cell types we generated chimeric mice with bone marrow from both WT and IFNγR−/− mice. Infection of these mixed-chimeric mice with LCMV resulted in decreased recovery of WT HSCs, but not of IFNγR−/− HSCs in the same mouse, which formally demonstrates that IFNγ directly impairs the proliferation of HSCs in vivo. Based on these experiments we conclude that IFNγ reduces HSC self renewal both in vitro and in vivo. Importantly, we thereby challenge the current concept in literature that IFNγ would induce the proliferation of HSCs (Baldridge et al, Nature 2010). Our findings thus provide challenging new insight regarding the impact of immune activation on hematopoiesis and will contribute significantly to the scientific discussion concerning this process. Moreover, our data also provide an explanation for the occurrence of anemia and bone marrow failure in several human diseases in which IFNγ is chronically produced. Disclosures: No relevant conflicts of interest to declare.


Blood ◽  
1993 ◽  
Vol 82 (2) ◽  
pp. 445-455 ◽  
Author(s):  
DM Bodine ◽  
NE Seidel ◽  
KM Zsebo ◽  
D Orlic

Abstract We have examined the effects of administration of stem cell-factor (SCF) on the number and distribution of pluripotent hematopoietic stem cells (PHSC) in normal mice. Using the competitive repopulation assay we found that in vivo administration of SCF increases the absolute number of PHSC per mouse threefold. The increased numbers of PHSC are found in the peripheral blood and spleen of the SCF-treated animals. The spleen and peripheral blood stem cells completely repopulated the erythroid, myeloid, and lymphoid lineages of irradiated or W/Wv hosts, similar to bone marrow PHSC. PHSC from the peripheral blood of SCF- treated mice have a lineage marker-negative, c-kit-positive phenotype that is indistinguishable from that of bone marrow PHSC. The increase in the absolute number of spleen PHSC is associated with efficient gene transfer to these cells without prior treatment with 5-fluorouracil. This is a US government work. There are no restrictions on its use.


Blood ◽  
2005 ◽  
Vol 106 (11) ◽  
pp. 796-796
Author(s):  
Hui Yu ◽  
Hongmei Shen ◽  
Xianmin Song ◽  
Paulina Huang ◽  
Tao Cheng

Abstract The G1-phase is a critical window during the cell cycle in which stem cell self-renewal may be balanced with differentiation and apoptosis. Increasing evidence suggests that the cyclin-dependent kinase inhibitors (CKIs) such as p21Cip1/Waf1, p27kip1, p16INK4A, and p18INK4C (p21, p27, p16 and p18 hereafter) are involved in stem cell self-renewal, as largely demonstrated in murine hematopoietic stem cells (HSCs). For example, we have recently demonstrated a significant increase of HSC self-renewal in the absence of p18 (Yuan et al, Nature Cell Biology 2004). But the actual roles of these CKIs in HSCs appear to be distinct as p21 and p18 have opposite effects (Yu H et al, ASH 2004) whereas p16 has a limited effect (Stepanova et al, Blood 2005) on HSC exhaustion after serial bone marrow transfer. Like p18, however, p27 was recently reported to also inhibit HSC self-renewal due to the fact that the competitive repopulating units (CRUs) were increased in p27−/− mouse bone marrow (Walkley et al, Nature Cell Biology 2005) in contrast to the results in a previous report (Cheng T et al, Nature Medicine 2000). To further gauge the impact of p18 versus p27 on the long-term repopulating ability (LTRA) of HSCs, we have generated different congenic strains (CD45.1 and CD45.2) of p18−/− or p27−/− mice in the C57BL/6 background, allowing us to compare them with the competitive repopulation model in the same genetic background. The direct comparison of LTRA between p18−/− and p27−/− HSCs was assessed with the competitive bone marrow transplantation assay in which equal numbers of p18−/− (CD45.2) and p27−/− cells (CD45.1) were co-transplanted. Interestingly, the p18−/− genotype gradually dominated the p27−/− genotype in multiple hematopoietic lineages and p18−/− HSCs showed 4-5 times more LTRA than p27−/− HSCs 12 months after cBMT. Further self-renewal potential of HSCs was examined with secondary transplantation in which primarily transplanted p18−/− or p27−/− cells were equally mixed with wild-type unmanipulated cells. Notably, while the p18−/− cells continued to outcompete the wild-type cells as we previously observed, the p27−/− cells did not behave so in the secondary recipients. Based on the flow cytometric measurement and bone marrow cellularity, we estimated that transplanted p18−/− HSCs (defined with the CD34−LKS immunophenotype) had undergone a 230-fold expansion, while transplanted p27−/− and wild-type HSCs had only achieved a 6.6- and 2.4-fold expansion in the secondary recipients respectively. We further calculated the yield of bone marrow nucleated cells (BMNCs) per HSC. There were approximately 44 x 103, 20.6 x 103, and 15 x 103 BMNCs generated per CD34−LKS cell in p18−/−, p27−/− and wild-type transplanted recipients respectively. Therefore, the dramatic expansion of p18−/− HSCs in the hosts was not accompanied by decreased function per stem cell. Our current study demonstrates that hematopoietic engraftment in the absence of p18 is more advantageous than that in the absence of p27, perhaps due to a more specific role of p18 on self-renewal of the long-term repopulating HSCs.


Blood ◽  
2008 ◽  
Vol 112 (11) ◽  
pp. sci-2-sci-2
Author(s):  
Margaret A. Goodell

Aging is an inexorable process marked by an accumulation of traits that ultimately limit the normal function of the organism. Stem cells have long been of interest to the study of aging due to their potential to rejuvenate somatic tissues. However, several groups have now shown that stem cells themselves are subject to the effects of aging. In the hematopoietic system, stem cells markedly decline in function with time, and display characteristic behaviors such as skewing of differentiation toward myeloid development. Current studies focus on both the broad effects of aging on stem cells, and also on the role of specific genes in the aging process. Our laboratory has used gene expression profiling to examine the global gene expression changes that occur in purified hematopoietic stem cells in a time course of aging in mice. Of around 14,000 genes profiled, we identified ~1500 that were age-induced and ~1600 that were age-repressed. Genes associated with the stress response, inflammation, and protein aggregation dominated the upregulated expression profile, while the downregulated profile was marked by genes involved in the preservation of genomic integrity and chromatin remodeling. Regional analysis suggested dysregulation of many gene clusters rather than alterations of a small number of aging-specific genes. These studies suggest that hematopoietic stem cells are subject to extensive epigenetic changes over time. This epigenetic dysregulation lays a fertile ground for secondary events that may enhance the impact of genetic changes, thus driving both functional attenuation and the increased propensity for neoplastic transformation with age. The influence of the aging environment on stem cells is only now being explored. The composition of the bone marrow changes with age, and this can clearly exert effects on the types and proportions of progenitors. Furthermore, environmental conditions that typify the aging state, such as chronic inflammation, can directly impact the stem cells. A broad view of aging bone marrow environment and stem cells, as well as current molecular data addressing these issues, will be presented.


Blood ◽  
2015 ◽  
Vol 126 (23) ◽  
pp. 442-442
Author(s):  
Joydeep Ghosh ◽  
Anindya Chatterjee ◽  
Baskar Ramdas ◽  
Michihiro Kobayashi ◽  
Peilin Ma ◽  
...  

Abstract The mixed-lineage leukemia (MLL) gene is required for the maintenance of adult hematopoietic stem cells (HSCs) and regulation of progenitor population. Translocations in MLL have been detected in approximately 5-10% of adult acute leukemia patients and in approximately 70% of acute leukemias in infants. Various genes, including AF4, AF5, AF9, ELL and ENL have been identified as partners for translocation in MLL-rearranged leukemia. In hematopoietic cells, expression of MLL fusion proteins result in a block of differentiation. AML patients who successfully undergo treatment but relapse suggest the importance of targeting leukemia initiating cells (LICs) within the MLL leukemia. LICs remain in a quiescent state and are capable of survival despite treatment with chemotherapeutic agents or targeted molecular inhibitors. In mouse models, LICs are defined by the capability of successfully propagating disease upon serial transplantation. In order to prevent disease relapse, identification of molecules, which regulate the self-renewal of LICs, is essential. The phosphatidylinositol 3-kinase (PI3K)-Akt-mechanistic target of rapamycin complex1 (mTORC1) pathway is a key regulator of self-renewal of both HSCs and LICs. Deletion of Raptor, a subunit of mTORC1, does not affect initiation and progression of acute myeloid leukemia (AML), but Raptor deficiency results in delayed propagation of AML. Upon its activation, mTORC1 phosphorylates and activates p70 ribosomal protein S6 kinase (S6K1) and inhibits the activity of eukaryote translation initiation factor 4E binding protein 1 (4E-BP1). S6K1 has been shown to be hyperactivated in hematopoietic cells expressing oncogenic MLL-AF9 fusion protein. In our study, we have assessed the role of S6K1 in the initiation, progression and propagation of AML using a genetic model of S6K1 knockout mice (S6K1-/-). We expressed MLL-AF9 fusion oncoprotein in WT and S6K1-/- hematopoietic stem and progenitor cells (HSC/Ps) and transplanted them into lethally irradiated recipients. Recipients of both WT and S6K1-/- HSC/Ps bearing MLL-AF9 displayed high white blood cell (WBC) count, splenomegaly and developed AML. There was no difference in survival between the WT and S6K1-/- recipients. In order to determine whether S6K1 regulates the self-renewal of LICs, we transplanted lethally irradiated mice with cells from WT and S6K1-/- primary recipients who developed AML. Recipients of S6K1 deficient AML cells survived significantly longer compared to controls (n=17/group, p<0.001). S6K1 deficient HSC/Ps expressing MLL-AF9 showed reduced activation of Akt as well as decreased mTORC1 activity, suggesting that deletion of S6K1 results in reduced activation of PI-3K-Akt-mTORC1 pathway both upstream and downstream of mTORC1 which indicates that S6K1 might be involve in a feedback loop within this pathway. To determine the role of S6K1 in normal HSC development and maintenance, we analyzed bone marrow derived HSCs in WT and S6K1-/- mice. S6K1 deficiency did not alter the frequency of long term HSCs (LT-HSCs) as defined by CD150+ CD48- Lin- Sca1+ c-Kit+ surface markers, but the absolute number of LT-HSCs were significantly reduced in S6K1 deficient mice (p<0.02). The absolute number of multipotent progenitors (MPPs) (p<0.001), common myeloid progenitors (CMPs) (p<0.01) and megakaryocyte-erythroid progenitors (MEPs) (p<0.01) were also significantly reduced in S6K1 deficient mice. Deficiency of S6K1 resulted in reduced quiescence of LT-HSCs (p<0.05). Expression level of p21, an inhibitor of cell cycle progression, was significantly decreased in LT-HSCs derived from S6K1-/- mice compared to LT-HSCs from control group. To study the role of S6K1 in HSCs' function, we performed competitive repopulation assay. Sorted LT-HSCs from bone marrow cells derived from either WT or S6K1-/- mice were transplanted with competitor cells into lethally irradiated recipients. S6K1 deficient LT-HSCs displayed reduced repopulating ability in secondary recipients (n=9-10/group, p<0.001). Expression level of p21 was downregulated in donor-derived HSCs isolated from secondary recipients of S6K1 deficient HSCs compared to control. Overall, our study establishes S6K1 as a critical regulator of self-renewal of both LICs and HSCs. Deficiency of S6K1 in AML cells results in delayed propagation of disease and deficiency of S6K1 in HSCs results in decreased self-renewal potential. Disclosures No relevant conflicts of interest to declare.


Sign in / Sign up

Export Citation Format

Share Document