Suppression of NLRP3 Inflammasome, Pyroptosis, and Cell Death by NIM811 in Rotenone-Exposed Cells as an in vitro Model of Parkinson’s Disease

2020 ◽  
pp. 1-11
Author(s):  
Minghao Zhang ◽  
Qingping He ◽  
Guisheng Chen ◽  
P. Andy Li

<b><i>Background:</i></b> Parkinson’s disease (PD) is characterized by the selective death of dopaminergic neurons in the substantia nigra. Recently, NLRP3 inflammasome and pyroptosis were found to be associated with PD. Cyclosporine A (CsA), an immunosuppressant, reduces neuronal death in PD. However, CsA could hardly pass through the blood-brain barrier (BBB) and high dose is associated with severe side effects and toxicity. N-methyl-4-isoleucine-cyclosporine (NIM811) is a CsA derivate that can pass through the BBB. However, little is known about its effect on PD. <b><i>Objective:</i></b> The objectives of this study were to explore the mechanism of rotenone-induced cell damage and to examine the protective effects of NIM811 on the neurotoxicity of a Parkinson-like in vitro model induced by rotenone. <b><i>Methods:</i></b> Murine hippocampal HT22 cells were cultured with the mitochondrial complex I inhibitor rotenone, a widely used pesticide that has been used for many years as a tool to induce a PD model in vitro and in vivo and proven to be reproducible. NIM811 was added to the culture media 3 h prior to the rotenone incubation. Cell viability was determined by resazurin assay, reactive oxygen species (ROS) production by dihydroethidine (DHE), and mitochondrial membrane potential by tetramethyl rhodamine methyl ester (TMRM). TUNEL and caspase-1 immunofluorescent double staining was used to detect pyroptosis. NLRP3, caspase-1, pro-caspase-1, GSDMD, and interleukin-18 (IL-18) were measured using Western blotting after 24 h of rotenone incubation. The reactivity of interleukin-1β (IL-1β) was determined by ELISA. <b><i>Results:</i></b> Our results demonstrated that rotenone caused more than 40% of cell death, increased ROS production, and reduced mitochondrial membrane potential, while NIM811 reversed these alterations. Immunofluorescent double staining showed that rotenone increased the percentage of caspase-1 and TUNEL double-labelled cells, an indication of pyroptosis, after 24 h of incubation. The protein expression of NLRP3, caspase-1, pro-caspase-1, GSDMD, IL-18, and IL-1β was significantly increased after 24 h of rotenone incubation. NIM811 suppressed rotenone-induced pyroptosis and downregulated the protein expression of NLRP3, caspase-1, pro-caspase-1, GSDMD, IL-1β, and IL-18. <b><i>Conclusion:</i></b> These results provide evidence that rotenone activates the NLRP3 inflammomere and induces pyroptosis. NIM811 protects the cell from rotenone-induced damage and inhibits NLRP3 inflammasome and pyroptosis. NIM811 might serve as a potential therapeutic drug in the treatment of PD.

1996 ◽  
Vol 24 (4) ◽  
pp. 581-587
Author(s):  
Cristiana Zanetti ◽  
Arrnalaura Stammati ◽  
Orazio Sapora ◽  
Flavia Zucco

The aim of this study was to investigate the endpoints related to cell death, either necrosis or apoptosis, induced by four chemicals in the promyelocytic leukemia cell line, HL-60. Cell morphology, DNA fragmentation, cytofluorimetric analysis and oxygen consumption were used to classify the type of cell death observed. In our analysis, we found that not all the selected parameters reproduced the differences observed in the cell death caused by the four chemicals tested. As cell death is a very complex phenomenon, several factors should be taken into account (cell type, exposure time and chemical concentration), if chemicals are to be classified according to differences in the mechanisms more directly involved in cell death.


Author(s):  
Mathieu Vinken ◽  
Michaël Maes ◽  
Sara Crespo Yanguas ◽  
Joost Willebrords ◽  
Tamara Vanhaecke ◽  
...  

2009 ◽  
Vol 37 (2) ◽  
pp. 209-218 ◽  
Author(s):  
Mathieu Vinken ◽  
Elke Decrock ◽  
Elke De Vuyst ◽  
Luc Leybaert ◽  
Tamara Vanhaecke ◽  
...  

This study was set up to critically evaluate a commonly-used in vitro model of hepatocellular apoptotic cell death, in which freshly isolated hepatocytes, cultured in a monolayer configuration, are exposed to a combination of Fas ligand and cycloheximide for six hours. A set of well-acknowledged cell death markers was addressed: a) cell morphology was studied by light microscopy; b) apoptotic and necrotic cell populations were quantified by in situ staining with Annexin-V, Hoechst 33342 and propidium iodide (PI); c) apoptotic and necrotic activities were monitored by probing caspase 3-like activity and measuring the extracellular leakage of lactate dehydrogenase (LDH), respectively; and d) the expression of apoptosis regulators was investigated by immunoblotting. The initiation of apoptosis was evidenced by the activation of caspase 8 and caspase 9, and increased Annexin-V reactivity. Progression through the apoptotic process was confirmed by the activation of caspase 3 and Bid, the enhanced expression of Bax, and the occurrence of nuclear fragmentation. Late transition to a necrotic appearance was demonstrated by an increased number of PI-positive cells and augmented extracellular release of LDH. Thus, the in vitro model allows the study of the entire course of Fas-mediated hepatocellular apoptotic cell death, which is not possible in vivo. This experimental system can serve a broad range of in vitro pharmaco-toxicological purposes, thereby directly assisting in the reduction of animal experimentation.


2010 ◽  
Vol 470 (2) ◽  
pp. 130-133 ◽  
Author(s):  
Alba Agudo-López ◽  
Begoña G. Miguel ◽  
Inmaculada Fernández ◽  
Ana M. Martínez

2020 ◽  
Vol 21 (8) ◽  
pp. 2943 ◽  
Author(s):  
Agata Grazia D’Amico ◽  
Grazia Maugeri ◽  
Salvatore Saccone ◽  
Concetta Federico ◽  
Sebastiano Cavallaro ◽  
...  

Amyotrophic lateral sclerosis (ALS) is a progressive neurodegenerative disease of complex etiology leading to motor neuron degeneration. Many gene alterations cause this pathology, including mutation in Cu, Zn superoxide dismutase (SOD1), which leads to its gain of function. Mutant SOD1 proteins are prone to aberrant misfolding and create aggregates that impair autophagy. The hypoxic stress is strictly linked to the disease progression since it induces uncontrolled autophagy activation and the consequent high rates of cell death. Previously, we showed that pituitary adenylate cyclase-activating polypeptide (PACAP) exerts neurotrophic activity in cultured mSOD1 motor neurons exposed to serum deprivation. To date, no studies have examined whether the protective effect of PACAP on mSOD1 cells exposed to hypoxic insult is mediated through the regulation of the autophagy process. In the present study, we used the neuroblastoma-spinal cord-34 (NSC-34) cell line, stably expressing human wild type or mutant SOD1 G93A, to represent a well characterized in vitro model of a familial form of ALS. These cells were exposed to 100-µM desferrioxamine mesylate salt for 24h, to mimic the hypoxic stress affecting motor neurons during the disease progression. Our results showed that PACAP treatment significantly reduced cell death and hypoxia-induced mSOD1 accumulation by modulating the autophagy process in G93A motor neurons, as revealed by the decreased LC3II and the increased p62 levels, two autophagy indicators. These results were also confirmed by evaluating the vacuole formation detected through light chain 3 (LC3) immunofluorescence. Furthermore, the PACAP effects on autophagy seem to be mediated through the activation of the MAPK/ERK signaling pathway. Overall, our data demonstrated that PACAP exerts an ameliorative effect on the mSOD1 motor neuron viability by modulating a hypoxia-induced autophagy process through activation of MAPK/ERK signaling cascade.


2021 ◽  
pp. 1-10
Author(s):  
Hong Wang ◽  
Shuqin Wang ◽  
Shanshan Huang

Acute lung injury (ALI) is a severe respiratory disorder with a high rate of mortality, and is characterized by excessive cell apoptosis and inflammation. MicroRNAs (miRNAs) play pivotal roles in ALI. This study examined the biological function of miR-494-3p in cell apoptosis and inflammatory response in ALI. For this, mice were injected with lipopolysaccharide (LPS) to generate an in-vivo model of ALI (ALI mice), and WI-38 cells were stimulated with lipopolysaccharide (LPS) to generate an in-vitro model of ALI. We found that miR-494-3p was significantly downregulated in the ALI mice and in the in-vitro model. Overexpression of miR-494-3p inhibited inflammation and cell apoptosis in the LPS-induced WI-38 cells, and improved the symptoms of lung injury in the ALI mice. We then identified cytidine/uridine monophosphate kinase 2 (CMPK2) as a novel target of miR-494-3p in the WI-38 cells. Furthermore, miR-494-3p suppressed cell apoptosis and the inflammatory response in LPS-treated WI-38 cells through targeting CMPK2. The NLRP3 inflammasome is reportedly responsible for the activation of inflammatory processes. In our study, CMPK2 was confirmed to activate the NLRP3 inflammasome in LPS-treated WI-38 cells. In conclusion, miR-494-3p attenuates ALI through inhibiting cell apoptosis and the inflammatory response by targeting CMPK2, which suggests the value of miR-494-3p as a target for the treatment for ALI.


Sign in / Sign up

Export Citation Format

Share Document