scholarly journals Effects of reduction factor on rain attenuation predictions over millimeter-wave links for 5G applications

2020 ◽  
Vol 9 (5) ◽  
pp. 1907-1915
Author(s):  
M. Rashid ◽  
Jafri Din

Millimeter-wave will be the strong contender for the terrestrial link using for 5G networks. So it is imperative to examine these frequency bands to ensure the uninterrupted services when 5G network is connected in tropical regions. A critical challenge of link-budgeting in mm-wave 5G networks is the precise estimation of rain attenuation for short-path links. The difficulties are further intensified in the tropical areas where the rainfall rate is very high. Different models are proposed to predict rain attenuation, however recent measurements show huge discrepancies with predictions for shorter links at mm-wave. The path reduction factor is the main parameter in the prediction model for predicting total attenuation from specific rain attenuation. This study investigates four path reduction factor models for the prediction of rain attenuation. A comparison was made between these models based on rain attenuation data measured at 26 GHz at 300 m and 1.3 km links in Malaysia. All models are found to predict rain attenuation at a 1.3 km link with minimum errors, while tremendous discrepancies are observed for 300 m link. Hence it is highly recommended to further investigate the reduction factor model for shorter links less than 1 km

Author(s):  
Shi Jie Seah ◽  
Siat Ling Jong ◽  
Hong Yin Lam ◽  
Jafri Din

Abstract Advanced telecommunication systems are moving toward a high data transfer rate and wider bandwidth. The 5G communication network has recently been implemented for such aims. However, 5G networks operating with high operating frequency (typically above 20 GHz) could lead to impairments because of the atmospheric phenomena mainly precipitation and especially heavy rain. To address this, an optimum rain fade margin for the 5G network in Peninsular Malaysia is proposed using 77 sites of the rain-gauge network, which convert 1-h rain data to 1-min rain data by means of the international telecommunication union recommendation (ITU-R) P.837-7 model. Long-term rain attenuation statistics are obtained from ITU-R P.530-17 and the synthetic storm technique. The predicted rain attenuation is also presented in monthly statistics and in rain attenuation contour maps. The analysis showed that at 99.99% of link availability, the optimum rain fade margin operating at 26 GHz link should be in the range of 6.50 to 10 dB and 7 to 11 dB at 28 GHz link for a 5G network. Such information is useful for network operators and system engineers for the operation of 5G terrestrial microwave links in heavy rain regions.


2011 ◽  
Vol E94-C (10) ◽  
pp. 1548-1556 ◽  
Author(s):  
Takana KAHO ◽  
Yo YAMAGUCHI ◽  
Kazuhiro UEHARA ◽  
Kiyomichi ARAKI

LastMile ◽  
2021 ◽  
Vol 98 (6) ◽  
Author(s):  
A. Ivashkin

Today, many countries around the world are actively building fifth generation mobile networks (5G/IMT-2020). The magazine Last Mile asked the director of the Republican unitary enterprise for supervision on telecommunications "BelGIE" of the Republic of Belarus (hereinafter: State Enterprise "BelGIE") A.A. Ivashkin about the situation with the implementation of the 5G network in the Republic of Belarus.


Author(s):  
Jalel Chebil ◽  
Al-Hareth Zyoud ◽  
Mohamed Hadi Habaebi ◽  
Islam Md. Rafiqul ◽  
Hassan Dao

<p><span>Rainfall can cause severe degradation to the operation of microwave links working with frequencies above 10 GHz. Many studies have investigated this problem, and one of the factors that attract the attention of researcher is rain fade slope which is the rate of change of rain attenuation.</span><span> The focus of this study is on rain fade slope for terrestrial links and it is </span><span>based on measurement conducted in Malaysia</span><span>.</span><span> This paper investigates the characteristics of the measured rain fade slope distribution </span><span>for various attenuation levels</span><span>. Then, </span><span>the ITU-R model for rain fade slope is compared with the corresponding statistics obtained from the measured data. Significant discrepancies have been observed since the ITU-R prediction model does not fit the measured fade slope distribution for many attenuation levels. It is recommended to modify the expression of the standard deviation in the ITU-R model when implemented in tropical regions.</span></p>


Bankarstvo ◽  
2021 ◽  
Vol 50 (2) ◽  
pp. 88-100
Author(s):  
Miloš Božović

This paper investigates the link between default rates by loan types and the systemic credit risk component. This link is described by a linear model that combines systemic and idiosyncratic contributions. The systemic component is a latent factor that depends directly on the aggregate loan default rate, while the idiosyncratic component drives specific variations of default rates across loan types. By transforming observable risk measures, the model can be econometrically represented as a mixed-effects model, where the systemic and idiosyncratic components represent, respectively, the slope and the intercept that are specific for each loan type individually. The proposed model is illustrated on a panel of defaulted loans of the Association of Serbian Banks. The obtained results show the model's very high power in explaining average default rates for all loan types. Thus, the aggregate default rate plays the role of a unique systemic component that mimics the influence of fundamental macroeconomic risk factors easily, without the necessity to model this relationship explicitly.


Machines ◽  
2021 ◽  
Vol 9 (12) ◽  
pp. 318
Author(s):  
Liuquan Wang ◽  
Qiang Liu ◽  
Chenxin Zang ◽  
Sanying Zhu ◽  
Chaoyang Gan ◽  
...  

With commercial application of 5G networks, many researchers have started paying attention to real-time control in 5G networks. This paper focuses on dual auto guided vehicles collaborative transport scenarios and designs a formation control system in current commercial 5G networks. Firstly, the structure of the 5G network researched in this paper is introduced. Then the round-trip time of 5G networks is measured and analyzed. The result shows that although the 5G round-trip time has randomness, it is mainly concentrated in 19 ± 3 ms, and the jitter mainly in 0 ± 3 ms. The Kalman filter is applied to estimate the transmission delay and experiment result shows the effectiveness of the estimation. Furthermore, the total delay including transmission delay and execution delay in control system is discussed. After establishing the AGV kinematic and formation model, complete control system based on compensation method is proposed. Finally, an experiment is carried out. Compared to the result without formation control, maximum distance error is reduced by 82.61% on average, while maximum angle error 45.91% on average. The result shows the effectiveness of the control system in formation maintaining in 5G network.


2018 ◽  
Vol 29 (8) ◽  
pp. e3450 ◽  
Author(s):  
Ibraheem Shayea ◽  
Tharek Abd. Rahman ◽  
Marwan Hadri Azmi ◽  
Arsany Arsad

Sign in / Sign up

Export Citation Format

Share Document