scholarly journals Design of Stand-alone Solar-Wind-Hydro Based Hybrid Power System: Case of Rural Village in Malawi

Author(s):  
Sylvester W. Chisale ◽  
Zaki Sari

Malawi has current electrification rate of less than 10% for a population of 18 million connected to the grid. The electricity generation company in Malawi (EGENCO) is greatly affected by low water levels making it difficult to satisfy the existing demand of electricity. This makes it difficult for Malawi to extend its National electricity grid. Thus, the aim of the study is to design stand-alone hybrid renewable energy system which is economically and technically feasible with focus on hydropower, wind, solar and battery bank within Dwangwa area. The study area is estimated to have 420 households, commercial and public service load with primary load demand of 5,556.31 kWh/day and peak load of 302.93 kW. River discharge data were collected from ministry of irrigation and water development while solar and wind data were collected from NASA. HOMER modeling tool was used to design a stand-alone system. From simulation results, the best design flow for Dwangwa river is 159 L/s at elevation of 100 metres and the best hybrid system combination was hydropower-wind-solar-battery and converter. The whole hybrid system initial capital cost was $2,662,638 while Net present cost (NPC) and levelized cost of energy (LCOE) were $3,597,197 and $0.134/kWh respectively. However, the cost of electricity in Malawi on the grid is K88.02/kWh ($0.11/kWh) which makes the system expensive. Therefore, the study has shown that the hybrid system is not economically viable. However, Government intervention can help to make the system monetarily acceptable and viable.

Author(s):  
Venkatachalam K M ◽  
V Saravanan

<p>The co-ordination of non-conventional energy technologies such as solar, wind, geothermal, biomass and ocean are gaining significance in India due to more energy requirements and high greenhouse gas emission. In this assessment, the sustainability of emerging the gird isolated hybrid solar photovoltaic (PV)/wind turbine (WT)/diesel generator (DG)/battery system for Arunai Engineering College (India) building is evaluated. The techno- economic and environmental research was inspected by HOMER Pro software by choosing the optimal combination depends on size of the components, renewable fraction, net present cost (NPC), cost of energy (COE) and greenhouse gas (GHG) emission of the hybrid system. From the acquired outcomes and sensitivity investigation, the optimal PV-WT-DG- Battery combination has a NPC of $28.944.800 and COE $0.1266/kWh, with an operating cost of $256.761/year. The grid isolated hybrid system is environmentally pleasant with a greenhouse gas emission of 2.692 kg/year with renewable fraction of 99.9%.</p>


Energies ◽  
2021 ◽  
Vol 14 (7) ◽  
pp. 1868
Author(s):  
Michail Katsivelakis ◽  
Dimitrios Bargiotas ◽  
Aspassia Daskalopulu ◽  
Ioannis P. Panapakidis ◽  
Lefteri Tsoukalas

Hybrid Renewable Energy Systems (HRES) are an attractive solution for the supply of electricity in remote areas like islands and communities where grid extension is difficult. Hybrid systems combine renewable energy sources with conventional units and battery storage in order to provide energy in an off-grid or on-grid system. The purpose of this study is to examine the techno-economical feasibility and viability of a hybrid system in Donoussa island, Greece, in different scenarios. A techno-economic analysis was conducted for a hybrid renewable energy system in three scenarios with different percentages of adoption rate (20%, 50% and 100%)and with different system configurations. Using HOMER Pro software the optimal system configuration between the feasible configurations of each scenario was selected, based on lowest Net Present Cost (NPC), minimum Excess Electricity percentage, and Levelized Cost of Energy (LCoE). The results obtained by the simulation could offer some operational references for a practical hybrid system in Donoussa island. The simulation results confirm the application of a hybrid system with 0% of Excess Electricity, reasonable NPC and LCoE and a decent amount of renewable integration.


2015 ◽  
Vol 2015 ◽  
pp. 1-10 ◽  
Author(s):  
Shuvankar Podder ◽  
Raihan Sayeed Khan ◽  
Shah Md Ashraful Alam Mohon

The size optimization and economic evaluation of the solar-wind hybrid renewable energy system (RES) to meet the electricity demand of 276 kWh/day with 40 kW peak load have been determined in this study. The load data has been collected from the motels situated in the coastal areas of Patenga, Chittagong. RES in standalone as well as grid connected mode have been considered. The optimal system configurations have been determined based on systems net present cost (NPC) and cost of per unit energy (COE). A standalone solar-wind-battery hybrid system is feasible and economically comparable to the present cost of diesel based power plant if 8% annual capacity shortage is allowed. Grid tied solar-wind hybrid system, where more than 70% electricity contribution is from RES, is economically comparable to present grid electricity price. Moreover, grid tied RES results in more than 60% reduction in greenhouse gases emission compared to the conventional grid. Sensitivity analysis has been performed in this study to determine the effect of capital cost variation or renewable resources variation on the system economy. Simulation result of sensitivity analysis has showed that 20% reduction of installation cost results in nearly 9%–12% reductions in cost of per unit energy.


Author(s):  
Ajoya Kumar Pradhan ◽  
Mahendra Kumar Mohanty ◽  
Sanjeeb Kumar Kar

The off-grid hybrid renewable energy generation system has lesser cost of energy with higher reliability when compared with solar photovoltaic (PV) or wind energy system individually. The optimization design is worked out by reducing the unit cost of energy (UCOE) for different case studies and comparing the outcomes obtained by the use of HOMER-Pro (Hybrid Optimization Model of Electric Renewable) software. The optimal cash flow analysis of hybrid energy system is based on the load patterns is discussed, solar irradiance (kW/m2) of site at proper latitude and longitude, wind speed and price of diesel, which is collected from a remote village in Khurda District, Odisha in India. Moreover, the optimization and sensitivity results of the system are find out by varying the input parameters like solar radiation, wind speed etc.


2020 ◽  
Vol 170 ◽  
pp. 01015
Author(s):  
Avinash Kaldate ◽  
Amarsingh Kanase-Patil ◽  
Shashikant Lokhande

One downside to Green Energy is that it cannot be estimated. Therefore, determining the optimum planning and perfect working strategies for the resources to be included in the hybrid system is very important. HOMER software has been used in this research paper to solve the case study of the hybrid renewable energy system. Due to its extensive analytical capabilities and advanced prediction capabilities based on the sensitivity of variables, HOMER is one of the most used software for optimal planning purposes. A case study for the sizing of a renewable energy-based hybrid system is solved in this article, using the Hybrid Optimization of Multiple Energy Resources (HOMER) software. Photovoltaic panels (PV panels), wind turbines (WT), batteries, converters, electric charge and grid are used in case study. The results of the simulation are presented in graphical form and tabulated for better system visualization. The design of a system to supply 6.8 KWh/d whereas the peak is 1.04 KW electric loads has been performed using HOMER software. In order to allow the user to choose the most suitable option, a comparative analysis has made, showing the pros and cons of cases. Optimum construction conditions help to lower operating costs.


2020 ◽  
Vol 10 (23) ◽  
pp. 8515
Author(s):  
Saif Mubaarak ◽  
Delong Zhang ◽  
Yongcong Chen ◽  
Jinxin Liu ◽  
Longze Wang ◽  
...  

Solar energy has attracted the attention of researchers around the world due to its advantages. However, photovoltaic (PV) panels still have not attained the desired efficiency and economic mature. PV tracking techniques can play a vital role in improving the performance of the PV system. The aim of this paper is to evaluate and compare the technical and economic performance of grid-connected hybrid energy systems including PV and fuel cells (FC) by applying major types of PV tracking technique. The topology and design principles and technical description of hybrid system components are proposed in this paper. Moreover, this paper also introduces economic criteria, which are used to evaluate the economy of different PV tracking techniques and seek the optimal configuration of system components. In the case study, the results show that the vertical single axis tracker was ranked 1st in terms of highest PV generation, penetration of renewable energy to the grid, lowest CO2 emission, highest energy sold to the grid and lowest purchased, and lowest net present cost (NPC) and levelized cost of energy (LCOE). The study found that the optimal design of a grid-connected hybrid energy system (PV-FC) was by using a vertical single axis tracker which has the lowest NPC, LCOE.


2015 ◽  
Vol 4 (1) ◽  
pp. 39-47 ◽  
Author(s):  
Qais H. Alsafasfeh

Most recent research on renewable energy resources main one goal to make Jordan less dependent on imported energy with locally developed and produced solar power, this paper discussed the efficient system of Wind/ PV Hybrid System to be than main power sources for south part of Jordan, the proposed hybrid system design based on Smart Grid Methodology,  the solar energy will be installed on top roof of  electricity subscribers across the Governorate of Maan, Tafila, Karak and Aqaba and the wind energy will set in one site by this way the capital cost for project will be reduced also the  simulation result show   the feasibility  is a very competitive and feasible cost . Economics analysis of a proposed renewable energy system was made using HOMER simulation and evaluation was completed with the cost per kilowatt of EDCO company, the net present cost is $2,551,676,416, the cost of energy is 0.07kWhr with a renewable fraction of 86.6 %.


2019 ◽  
Vol 8 (3) ◽  
pp. 231-241
Author(s):  
Abhi Chatterjee ◽  
Alan Brent ◽  
Ramesh Rayudu ◽  
Piyush Verma

Quality education and schools have a key role to play in the sustainable development of society. Unfortunately, many remote communities in developing countries fail to enjoy access to quality education due to a lack of electricity, thereby interrupting regular school services in the villages. The main objective of the paper contributes to understanding the importance of the energy-education accord, and aims to curb the social challenges prevailing in the villages. Specifically, the paper suggests a technical intervention by designing a hybrid renewable energy system for such schools. The approach is demonstrated through a case study with a load demand of approximately 4 kWh/d, comprising a class size of 40 students. A techno-economic evaluation of the energy system reveals the levelized cost of energy of the system at USD 0.22 per kWh, which may be affordable considering number of other aspects, outlined in this paper, to enable a larger uptake of such systems in developing countries. ©2019. CBIORE-IJRED. All rights reserved


IJOSTHE ◽  
2018 ◽  
Vol 5 (5) ◽  
pp. 7
Author(s):  
Ritu Gupta ◽  
Amit Shrivastava

With the growing demand of electricity, deployment of microgrid is becoming an attractive option to meet the energy demands. At present, large-scale wind/solar hybrid system is of great potential for development. The large-scale wind/solar hybrid system is of higher reliability compared with wind power generation alone and solar power generation alone However, a grid connected microgrid suffers a crucial stability issues during a fault in utility grid. For stable operation of microgrid during fault in grid. In this paper transient stability of the microgrid is studied during fault in utility grid. This research work presents the design and implementation of a hybrid renewable energy system that allows a cost-efficient and sustainable energy supply of the loads. The integration of the solar system with the network is rather complex and expensive. With this construction proposal, however, it is not only possible to create an economical and simple hybrid system, but also a reliable, efficient and economical system.


Author(s):  
Amevi Acakpovi ◽  
Joana Mendy Okechukwu ◽  
Patrick Adjei ◽  
Eric Asamoah

Access to energy is pivotal to the socio-economic growth of many developing countries, including Ghana. Energy generation from fossil fuels is not sustainable and leads to global warming, which is detrimental to the environment. This study seeks to establish how renewable energies are embedded and utilised in the Ghanaian energy system and the factors that can expedite the speedy penetration of renewable technologies into the country, particularly solar PV, wind, and biogas. The study adopted a mixed research approach which includes quantitative and qualitative studies. The findings revealed that solar energy is the most available resource in the country compared to other renewables. It was also indicative that integrating solar PV, wind and biogas in the national electricity grid will improve the percentage of energy generation mix, which will help sustain constant power supply, reduce the cost of energy charges, and consequently improve the country’s economy. The results also showed the possible factors that affect future penetration of these technologies, including unavailability of consumer financing opportunities, inadequate training facilities, lack of adequate regulations/policies, lack of information on the cost and benefits of renewable energies. The six findings of the paper established the availability of renewables in Ghana and the prospect of their related technology. While solar PV is on the ascendency, biogas is progressing gradually and wind is moving at a snail’s pace. This study significantly established the benefits of incorporating solar PV, wind and biogas in the Ghanaian energy mix to improve the electricity supply and further outlined the impeding factors that need to be improved upon through policy.


Sign in / Sign up

Export Citation Format

Share Document