scholarly journals Performance evaluation and comparison of diode clamped multilevel inverter and hybrid inverter based on PD and APOD modulation techniques

Author(s):  
N. Susheela ◽  
P. Satish Kumar

<p>The popularity of multilevel inverters have increasing over the years in various applications without use of a transformer and has many benefits. This work presents the performance and comparative analysis of single phase diode clamped multilevel inverter and a hybrid inverter with reduced number of components. As there are some drawbacks of diode clamped multilevel inverter such as requiring higher number of components, PWM control method is complex and capacitor voltage balancing problem, an implementation of hybrid inverter that requires fewer components and less carrier signals when compared to conventional multilevel inverters is discussed. The performance of single phase diode clamped multilevel inverter and hybrid multilevel inverter for seven, nine and eleven levels is performed using phase disposition, alternate phase opposition disposition sinusoidal pulse width modulation techniques. Both the multilevel inverter are implemented for the above mentioned multicarrier based Pulse Width Modulation methods for R and R-L loads.  The total harmonic distortion is evaluated at various modulation indices. The analysis of the multilevel inverters is done by simulation in matlab / simulink environment.</p>

Author(s):  
Nunsavath Susheela

<p>The multilevel inverters have highly desirable characteristics in high power high voltage applications. The multilevel inverter was started first with diode clamped multilevel inverter. Later, various configurations have been came into existence for many applications. However the multilevel inverters have some demerits such as requiring higher number of components, PWM control method is complex and capacitor voltage balancing problem. The hybrid multilevel inverter presented in this paper has superior characteristics over conventional multilevel inverters. The hybrid multilevel inverter employs fewer components and less carrier signals when compared to conventional multilevel inverters. It consists of level generation and polarity generation stages which involves high frequency and low frequency switches. The complexity and overall cost for higher output voltage levels are greatly reduced. Implementation of single phase 7-level, 9-level and 11-level diode clamped multilevel inverter and hybrid multilevel inverter has been performed using sinusoidal pulse width modulation (SPWM) strategies i.e., phase disposition (PD), alternate phase opposition disposition (APOD). Also these techniques are compared in terms of total harmonic distortion (THD) for various modulation indices and observed to be greatly improved in case of hybrid inverter when compared to diode clamped inverter. The comparative study of performance for single phase diode clamped multilevel inverter and hybrid inverter is analyzed with different loads.  Simulation is performed using MATLAB/ SIMULINK. </p>


Author(s):  
R. Palanisamy ◽  
K. Selvakumar ◽  
K. Vijayakumar ◽  
D. Karthikeyan ◽  
S. Vidyasagar ◽  
...  

This paper revolves around the reduction of a number of switches and the sources for a multilevel inverter, for this, we have proposed a transformer-based topology which has helped us in reducing the number of switches from twenty-four to sixteen and also in the reduction of sources from eight to one. The circuit consists of two H-Bridges which are coupled by a single-phase transformer, the topology gives us a liberty of changing the number of levels in accordance to the number of turns in the secondary side of the transformer for example if our ratio is 1:1 the number of levels will be five subsequently if it is changed to 1:2 the number of levels will be changed to seven. As the number of switches is reduced the size and complexity of the circuit is also decreased. In order to improve on the part of switching efficiency, we have used space vector pulse width modulation which is a better method as compared to its counterpart switching methods such as sinusoidal pulse width modulation and multiple pulse width modulation techniques.


2020 ◽  
pp. 133-137
Author(s):  
Vivekanandan S ◽  
Vignesh C J ◽  
Kamalkumar V ◽  
Balamurugan K

This paper narrates the pulse width modulation techniques used in the multilevel inverters (MLIs). In the recent industrial revolution era, MLIs found in medium voltage high power applications especially in drives domain. The control technique employed in the MLIs decides the effective conversion of power in the circuit. The harmonic content present in the output signal will lead to the performance changes in the load side. This is indicated as measure of total harmonic distortion (THD). The output signal from MLIs is fewer harmonic when the number of levels is high without any filtering process. In addition, the control method of MLIs decides the effectiveness of the system and calculating the THD. There are different types of control methods employed in the MLIs in the various literatures. Each method differs from its benefits and suitable for driving the inverter switches for a particular application. The working of each models was discussed in detail. The models are created in MATLAB/Simulink platform and analyzed its effectiveness.


Author(s):  
Nunsavath Susheela ◽  
P. Satish Kumar

The multilevel inverters are very popular in high power high voltage applications. However the multilevel inverters has some demerits such as requiring higher number of components, PWM control method is complex and capacitor voltage balancing problem. The hybrid multilevel inverter presented in this paper has superior characteristics over conventional multilevel inverters. The hybrid multilevel inverter employs fewer components and less carrier signals when compared to conventional multilevel inverters. It consists of level generation and polarity generation stages which involves high frequency and low frequency switches. The complexity and overall cost for higher output voltage levels are greatly reduced. Implementation of single phase 7-level, 9-level and 11-level hybrid multilevel inverter has been performed using sinusoidal pulse width modulation (SPWM) strategies i.e., phase disposition (PD), alternate phase opposition disposition (APOD) and carrier overlapping (CO). Also the three techniques are compared in terms of total harmonic distortion (THD) for various modulation indices and observed to be greatly improved when compared to conventional topologies. The performance of single phase eleven level hybrid inverter is analyzed for different loads.  Simulation is performed using MATLAB/ Simulink.


Author(s):  
S. Usha ◽  
C. Subramani ◽  
A. Geetha

This paper deals with the design of cascaded 11 level H- bridge inverter. It includes a comparison between the 11 level H-bridge and T-bridge multilevel inverter. The cascaded inverter of higher level is a very effective and practical solution for reduction of total harmonic distortion (THD).These cascaded multilevel inverter can be used for higher voltage applications with more stability. As the level is increased the output waveform becomes more sinusoidal in nature. The inverter is designed using multicarrier sinusoidal pulse width modulation technique for generating triggering pulses for the semiconductor switches used in the device. Through this paper it will be proved that a cascaded multilevel H-bridge topology has higher efficiency than a T-bridge inverter, as whichever source input voltage is provided since input is equal to the output voltage. In T-bridge inverter, the output obtained is half of the applied input, so efficiency is just half as compared to H-bridge. The output waveform is distorted and has higher THD.  The simulation is performed using MATLAB /Simulink 2013 software.


2018 ◽  
Vol 7 (3.1) ◽  
pp. 42
Author(s):  
B Kandavel ◽  
G Uvaraj ◽  
M Manikandan

This paper presents comparative study of Total Harmonic Distortion (THD) and its individual harmonic contents without grid and with grid for Diode clamped multi level inverter (DCMLI) and Flying capacitor clamped multilevel inverter (FCMLI) based Doubly Fed Induction Generator (DFIG) employing PI and Fuzzy logic controller (FLC). Simple method to control for a variable speed wind energy conversion system with a DFIG is connected to the grid through a diode rectifier and a diode clamped multilevel inverter (DCMLI). The DC-link voltage is controlled through a DC-DC boost converter to keep the DC voltage at constant value. Inverter is controlled by sinusoidal pulse width modulation technique, which supplies power to the grid. The THD and its harmonic content are studied for different wind speeds. DFIG fed flying capacitor multi level inverter (FCMLI) based WECS connected to load as well as grid. FCMLI is controlled through sinusoidal pulse width modulation. Voltage and current harmonics are studied. The results of both multilevel inverters are compared. It shows that the level of harmonic content of two types of multilevel inverters working at different wind speeds indicates that Total Harmonic Distortion (THD) for DCMLI has given best results.  


Author(s):  
Kureve D. Teryima ◽  
Goshwe Y. Nentawe ◽  
Agbo O. David

<p>This paper proposes a switching control for a cascaded H-bridge inverter structure with reduced switches which is used to improve the THD performance of a single phase five level CHB MLI. The multi level inverter is simulated for the conventional carrier overlapping APOD and the proposed carrier overlapping APOD Pulse Width Modulation (PWM) switching control technique. The total harmonic distortion (THD) of the output voltages are observed for both PWM control techniques. The performance of the symmetric CHB MLI is simulated using MATLAB-SIMULINK. It is observed that the proposed carrier overlapping APODPWM provides output with relatively low THD as compared to the conventional carrier overlapping APODPWM.</p>


Author(s):  
V.Jamuna Venkatesan ◽  
Gayathrimonicka Subarnan

<p>This paper presents performance features of Asymmetric Cascaded Multilevel inverter. Multilevel inverters are commonly modulated by using multicarrier pulse width modulation (MCPWM) techniques such as phase-shifted multicarrier modulation and level-shifted multicarrier modulation. Amongst these level-shifted multicarrier modulations technique produces the best harmonic performance. This work studies about multilevel inverter with unequal DC sources using level shifting MCPWM technique. The Performances indices like Total Harmonic Distortion (THD), reduction of switches and number of DC Sources are considered. A procedure to achieve the appropriate level shifting is also presented is this paper.</p>


Author(s):  
S. Nagaraja Rao ◽  
D. V. Ashok Kumar ◽  
Ch. Sai Babu

In this paper, a cascaded based reversing voltage (CBRV) multilevel inverter structure is proposed inorder to compensate the major drawbacks in the conventional multilevel inverters. The proposed topology requires less number of components, less carrier signals and gate drives when compared to existing multilevel inverters particularly at higher levels. Therefore, the complexity and overall cost are greatly reduced particularly for higher output voltage levels. This paper also presents the most relevant control and modulation methods by a triangular based multi carrier pulse width modulation (PWM) scheme for the proposed CBRV inverter topology. This paper presents a comparison between different modulation strategies for CBRV inverter topology based on sinusoidal and space vector references with multi triangular carrier waves. The work strive hard to present the scrutiny that has been made between various PWM control techniques for 1–Ф seven level CBRV inverter structure. The comparison is made in terms of Total Harmonic Distortion (THD) and fundamental RMS voltage. Finally, the simulation results are included to verify the effectiveness of the proposed CBRV inverter topology and validate the proposed theory. A hardware set up was developed for a 1–Ф seven level CBRV inverter topology using FPGA based pulse generation.


Author(s):  
Kureve D. Teryima ◽  
Goshwe Y. Nentawe ◽  
Agbo O. David

This paper proposes a switching control for a cascaded H-bridge inverter structure with reduced switches which is used to improve the THD performance of a single phase five level CHB MLI. The multi level inverter is simulated for the conventional carrier overlapping APOD and the proposed carrier overlapping APOD Pulse Width Modulation (PWM) switching control technique. The total harmonic distortion (THD) of the output voltages are observed for both PWM control techniques. The performance of the symmetric CHB MLI is simulated using MATLAB-SIMULINK. It is observed that the proposed carrier overlapping APODPWM provides output with relatively low THD as compared to the conventional carrier overlapping APODPWM.


Sign in / Sign up

Export Citation Format

Share Document