scholarly journals Performance Evaluation of Multicarrier Based Techniques for Single Phase Hybrid Multilevel Inverter using Reduced Switches

Author(s):  
Nunsavath Susheela ◽  
P. Satish Kumar

The multilevel inverters are very popular in high power high voltage applications. However the multilevel inverters has some demerits such as requiring higher number of components, PWM control method is complex and capacitor voltage balancing problem. The hybrid multilevel inverter presented in this paper has superior characteristics over conventional multilevel inverters. The hybrid multilevel inverter employs fewer components and less carrier signals when compared to conventional multilevel inverters. It consists of level generation and polarity generation stages which involves high frequency and low frequency switches. The complexity and overall cost for higher output voltage levels are greatly reduced. Implementation of single phase 7-level, 9-level and 11-level hybrid multilevel inverter has been performed using sinusoidal pulse width modulation (SPWM) strategies i.e., phase disposition (PD), alternate phase opposition disposition (APOD) and carrier overlapping (CO). Also the three techniques are compared in terms of total harmonic distortion (THD) for various modulation indices and observed to be greatly improved when compared to conventional topologies. The performance of single phase eleven level hybrid inverter is analyzed for different loads.  Simulation is performed using MATLAB/ Simulink.

Author(s):  
Nunsavath Susheela

<p>The multilevel inverters have highly desirable characteristics in high power high voltage applications. The multilevel inverter was started first with diode clamped multilevel inverter. Later, various configurations have been came into existence for many applications. However the multilevel inverters have some demerits such as requiring higher number of components, PWM control method is complex and capacitor voltage balancing problem. The hybrid multilevel inverter presented in this paper has superior characteristics over conventional multilevel inverters. The hybrid multilevel inverter employs fewer components and less carrier signals when compared to conventional multilevel inverters. It consists of level generation and polarity generation stages which involves high frequency and low frequency switches. The complexity and overall cost for higher output voltage levels are greatly reduced. Implementation of single phase 7-level, 9-level and 11-level diode clamped multilevel inverter and hybrid multilevel inverter has been performed using sinusoidal pulse width modulation (SPWM) strategies i.e., phase disposition (PD), alternate phase opposition disposition (APOD). Also these techniques are compared in terms of total harmonic distortion (THD) for various modulation indices and observed to be greatly improved in case of hybrid inverter when compared to diode clamped inverter. The comparative study of performance for single phase diode clamped multilevel inverter and hybrid inverter is analyzed with different loads.  Simulation is performed using MATLAB/ SIMULINK. </p>


Author(s):  
Sanjeev Kumar ◽  
◽  
H.K. Verma ◽  
M.P.S. Chawla ◽  
◽  
...  

A hybrid structured asymmetric switching capacitor multilevel inverter (ASC-MLI) is suggested in this work. The notion behind presenting this topology is to reduce the device count and DC sources as compared with conventional MLI. The step by step operating mode of single phase ASC-MLI is presented and by doing slight modifications the same configuration is used in three phase utility application and electric drive. The proposed configurations utilize major benefits of self-voltage balancing capability of capacitor voltage, which is independent from different load type and modulations index. To generate the switching pulse for corresponding switches the multi-carrier based sinusoidal pulse width modulation (MCS-PWM) technique is used; in addition to this simulation result are obtained using MATLAB/Simulink 2016b software version. Simulation results of an induction motor drive connected as three phase load highlights good performance of 17-level MLI.


Author(s):  
N. Susheela ◽  
P. Satish Kumar

<p>The popularity of multilevel inverters have increasing over the years in various applications without use of a transformer and has many benefits. This work presents the performance and comparative analysis of single phase diode clamped multilevel inverter and a hybrid inverter with reduced number of components. As there are some drawbacks of diode clamped multilevel inverter such as requiring higher number of components, PWM control method is complex and capacitor voltage balancing problem, an implementation of hybrid inverter that requires fewer components and less carrier signals when compared to conventional multilevel inverters is discussed. The performance of single phase diode clamped multilevel inverter and hybrid multilevel inverter for seven, nine and eleven levels is performed using phase disposition, alternate phase opposition disposition sinusoidal pulse width modulation techniques. Both the multilevel inverter are implemented for the above mentioned multicarrier based Pulse Width Modulation methods for R and R-L loads.  The total harmonic distortion is evaluated at various modulation indices. The analysis of the multilevel inverters is done by simulation in matlab / simulink environment.</p>


Author(s):  
N. Susheela ◽  
P. Satish Kumar

<p class="Els-Abstract-text">A comparative analysis of three phase eleven level diode clamped multilevel inverter (DCMLI) and hybrid inverter is performed in this paper in which the later requires fewer carrier signals, less number of devices and gate drive circuits. The performance is evaluated using phase disposition (PD), alternate phase opposition disposition (APOD) and carrier overlapping (CO) sinusoidal pulse width modulation (SPWM) methods. The hybrid multilevel inverter has superior features over diode clamped multilevel inverters and is more efficient since the positive levels of the inverter that are generated  by high frequency switches (level generation part), are reversed by low frequency switches (polarity generation part) when the voltage polarity is required to be changed for negative polarity. Therefore, the overall cost and complexity of the hybrid inverter are greatly reduced particularly for higher inverter output voltage levels. Simulation is performed for three phase eleven level diode clamped multilevel inverter and hybrid multilevel inverter using MATLAB/Simulink for induction motor load and the total harmonic distortion is evaluated at different load torques.</p>


Author(s):  
Asef A. Saleh ◽  
Rakan Khalil Antar ◽  
Harith Ahmed Al-Badrani

The advantage of multilevel inverters is to produce high output voltage values with distortion as minimum as possible. To reduce total harmonic distortion (THD) and get an output voltage with different step levels using less power electronics switching devices, 15-level inverter is designed in this paper. Single-phase 11-switches with zero-level (ZL) and none-zero-level (NZL) inverter based on modified absolute sinusoidal pulse width modulation (MASPWM) technique is designed, modelled and built by MATLAB/Simulink. Simulation results explained that, multilevel inverter with NZL gives distortion percent less than that with ZL voltage. The THD of the inverter output voltage and current of ZL are 4% and 1%, while with NZL is 3.6% and 0.84%, respectively. These results explain the effectiveness of the suggested power circuit and MASPWM controller to get the required voltage with low THD.


Author(s):  
S. Usha ◽  
C. Subramani ◽  
A. Geetha

This paper deals with the design of cascaded 11 level H- bridge inverter. It includes a comparison between the 11 level H-bridge and T-bridge multilevel inverter. The cascaded inverter of higher level is a very effective and practical solution for reduction of total harmonic distortion (THD).These cascaded multilevel inverter can be used for higher voltage applications with more stability. As the level is increased the output waveform becomes more sinusoidal in nature. The inverter is designed using multicarrier sinusoidal pulse width modulation technique for generating triggering pulses for the semiconductor switches used in the device. Through this paper it will be proved that a cascaded multilevel H-bridge topology has higher efficiency than a T-bridge inverter, as whichever source input voltage is provided since input is equal to the output voltage. In T-bridge inverter, the output obtained is half of the applied input, so efficiency is just half as compared to H-bridge. The output waveform is distorted and has higher THD.  The simulation is performed using MATLAB /Simulink 2013 software.


2018 ◽  
Vol 7 (3.1) ◽  
pp. 42
Author(s):  
B Kandavel ◽  
G Uvaraj ◽  
M Manikandan

This paper presents comparative study of Total Harmonic Distortion (THD) and its individual harmonic contents without grid and with grid for Diode clamped multi level inverter (DCMLI) and Flying capacitor clamped multilevel inverter (FCMLI) based Doubly Fed Induction Generator (DFIG) employing PI and Fuzzy logic controller (FLC). Simple method to control for a variable speed wind energy conversion system with a DFIG is connected to the grid through a diode rectifier and a diode clamped multilevel inverter (DCMLI). The DC-link voltage is controlled through a DC-DC boost converter to keep the DC voltage at constant value. Inverter is controlled by sinusoidal pulse width modulation technique, which supplies power to the grid. The THD and its harmonic content are studied for different wind speeds. DFIG fed flying capacitor multi level inverter (FCMLI) based WECS connected to load as well as grid. FCMLI is controlled through sinusoidal pulse width modulation. Voltage and current harmonics are studied. The results of both multilevel inverters are compared. It shows that the level of harmonic content of two types of multilevel inverters working at different wind speeds indicates that Total Harmonic Distortion (THD) for DCMLI has given best results.  


2018 ◽  
Vol 7 (03) ◽  
pp. 23727-23736
Author(s):  
M. Devika ◽  
M. Sundaraperumal ◽  
M.Valan Rajkumar

Multilevel inverters have become more attractive for researchers due to low total harmonic distortion in the output voltage and low electromagnetic interference. This paper proposes a novel single-stage quasi-cascaded H-bridge five-level boost inverter. The proposed quasi cascaded h-bridge five-level boost inverter has the advantages over the cascaded H-bridge quasi-Z-source inverter in cutting down passive components. Consequently, size, cost, and weight of the proposed inverter are reduced. A capacitor with low voltage rating is added to the proposed topology to remove an offset voltage of the output AC voltage when the input voltages of two modules are unbalanced. Besides, sinusoidal pulse width modulation techniques used here. PID controller is used to control the capacitor voltage of each module. This paper presents circuit analysis, the operating principles, and simulation results of the proposed system


2019 ◽  
Vol 16 (2) ◽  
pp. 422-427
Author(s):  
S. Karthikeyan ◽  
K. Lakshmi ◽  
S. Sivaranjani ◽  
J. Karthika ◽  
T. Nandhakumar

Multilevel inverters are mainly used in high power and medium voltage applications to reduce the required voltage rating of the power semiconductor switching devices. Nowadays multilevel inverters are also preferred for various applications regardless of the power ratings because they can essentially realize lower harmonics with lower switching frequency and lower electromagnetic interference (EMI). However, it has some disadvantages such as increased number of components, complex Pulse Width Modulation control method, and voltage balancing problem. In this paper a new topology of cascaded multilevel inverter using reduced number of switches is introduced resulting in higher output voltage levels. There era five series connected H-bridges and the DC voltage is given in the ratio n0: n: n3:2n2:10n. The output voltage having 123 levels is obtained (61 positive voltage levels, 61 negative voltage levels and zero voltage levels). Reduced Total Harmonic Distortion (THD) makes them useful for electric vehicle, FACTS and has given option for various power applications. The proposed topology results in reduction of cost and has simplicity of control system. Therefore, the overall cost and complexity are greatly reduced particularly for higher output voltage levels.


Author(s):  
Wail Ali Ali Saleh ◽  
Nurul Ain Mohd Said ◽  
Wahidah Abd Halim

Multilevel inverters are gaining special interest among researchers and in the industry due to their widespread applications and numerous merits. Obtaining high quality, more reliable output while using a reduced number of electronic components is the main purpose of most of the research conducted in this area of study. The purpose of this study is to apply the nearest level control (NLC) method to a 13-level transistor-clamped H-bridge (TCHB) inverter with unequal DC voltage supplies. The NLC method operates at the fundamental frequency, thus reducing switching losses, and can reduce the harmonic content significantly. The adopted multilevel inverter consists of two TCHB cells supplied with two asymmetrical DC input sources with a voltage ratio of 1:2. This structure reduces the number of electronic components, and the asymmetry in the DC input voltages results in a higher number of levels. The adopted topology and its proposed control method were simulated in Matlab/Simulink, and the simulation results were verified through experiments using an Altera field-programmable gate array (FPGA) board. The results showed that the topology and its control method are efficient in obtaining a high-quality output with an improved total harmonic distortion (THD).


Sign in / Sign up

Export Citation Format

Share Document