Techno-economic Evaluation of Stand-alone Hybrid Renewable Energy System for Remote Village Using HOMER-pro Software

Author(s):  
Ajoya Kumar Pradhan ◽  
Mahendra Kumar Mohanty ◽  
Sanjeeb Kumar Kar

The off-grid hybrid renewable energy generation system has lesser cost of energy with higher reliability when compared with solar Photovoltaic (PV) or wind energy system individually. The optimization design is worked out by reducing the Unit Cost Of Energy (UCOE) for different case studies and comparing the outcomes obtained by the use of HOMER-Pro (hybrid optimization model of electric renewable) software. The optimal cash flow analysis of hybrid energy system is based on the load patterns is discussed, solar irradiance (kW/m2) of site at proper latitude and longitude, wind speed and price of diesel, which is collected from a remote village in Khurda District, Odisha in India. Moreover, the optimization and sensitivity results of the system are find out by varying the input parameters like solar radiation, wind speed etc.

Author(s):  
Ajoya Kumar Pradhan ◽  
Mahendra Kumar Mohanty ◽  
Sanjeeb Kumar Kar

The off-grid hybrid renewable energy generation system has lesser cost of energy with higher reliability when compared with solar photovoltaic (PV) or wind energy system individually. The optimization design is worked out by reducing the unit cost of energy (UCOE) for different case studies and comparing the outcomes obtained by the use of HOMER-Pro (Hybrid Optimization Model of Electric Renewable) software. The optimal cash flow analysis of hybrid energy system is based on the load patterns is discussed, solar irradiance (kW/m2) of site at proper latitude and longitude, wind speed and price of diesel, which is collected from a remote village in Khurda District, Odisha in India. Moreover, the optimization and sensitivity results of the system are find out by varying the input parameters like solar radiation, wind speed etc.


Author(s):  
Shweta Goyal ◽  
Sachin Mishra ◽  
Anamika Bhatia

<p>To compare the different result of optimization of a hybrid energy system. A hybrid renewable energy system (HRES) is the combination of renewable and non-renewable sources which is playing a very important role for rural area electrification when grid extension is not possible or excessively expensive. Non renewable sources like diesel power generator (optional) are used in a HRES for backup when renewable energy supply is not sufficient. While the HRES is very important due to the smallest natural and physical contact compared to non renewable sources, this work proposed a comparison outcome with the help of different component by using HOMER software and get best optimize result for the model. This paper presents a wide-ranging review of various aspects of HRES. This paper discusses study, best sizing, and model, organize aspect and reliability issue.</p>


2020 ◽  
Vol 12 (14) ◽  
pp. 5732
Author(s):  
Michael O. Ukoba ◽  
Ogheneruona E. Diemuodeke ◽  
Mohammed Alghassab ◽  
Henry I. Njoku ◽  
Muhammad Imran ◽  
...  

This paper presents eight hybrid renewable energy (RE) systems that are derived from solar, wind and biomass, with energy storage, to meet the energy demands of an average household in the six geopolitical zones of Nigeria. The resource assessments show that the solar insolation, wind speed (at 30 m hub height) and biomass in the country range, respectively, from 4.38–6.00 kWh/m2/day, 3.74 to 11.04 m/s and 5.709–15.80 kg/household/day. The HOMER software was used to obtain optimal configurations of the eight hybrid energy systems along the six geopolitical zones’ RE resources. The eight optimal systems were further subjected to a multi-criteria decision making (MCDM) analysis, which considers technical, economic, environmental and socio-cultural criteria. The TOPSIS-AHP composite procedure was adopted for the MCDM analysis in order to have more realistic criteria weighting factors. In all the eight techno-economic optimal system configurations considered, the biomass generator-solar PV-battery energy system (GPBES) was the best system for all the geopolitical zones. The best system has the potential of capturing carbon from the atmosphere, an attribute that is desirous for climate change mitigation. The cost of energy (COE) was seen to be within the range of 0.151–0.156 US$/kWh, which is competitive with the existing electricity cost from the national grid, average 0.131 US$/kWh. It is shown that the Federal Government of Nigeria favorable energy policy towards the adoption of biomass-to-electricity systems would make the proposed system very affordable to the rural households.


Energies ◽  
2021 ◽  
Vol 14 (21) ◽  
pp. 7084
Author(s):  
Fadi Kahwash ◽  
Basel Barakat ◽  
Ahmad Taha ◽  
Qammer H. Abbasi ◽  
Muhammad Ali Imran

This study focuses on improving the sustainability of electrical supply in the healthcare system in the UK, to contribute to current efforts made towards the 2050 net-zero carbon target. As a case study, we propose a grid-connected hybrid renewable energy system (HRES) for a hospital in the south-east of England. Electrical consumption data were gathered from five wards in the hospital for a period of one year. PV-battery-grid system architecture was selected to ensure practical execution through the installation of PV arrays on the roof of the facility. Selection of the optimal system was conducted through a novel methodology combining multi-objective optimisation and data forecasting. The optimisation was conducted using a genetic algorithm with two objectives (1) minimisation of the levelised cost of energy and (2) CO2 emissions. Advanced data forecasting was used to forecast grid emissions and other cost parameters at two year intervals (2023 and 2025). Several optimisation simulations were carried out using the actual and forecasted parameters to improve decision making. The results show that incorporating forecasted parameters into the optimisation allows to identify the subset of optimal solutions that will become sub-optimal in the future and, therefore, should be avoided. Finally, a framework for choosing the most suitable subset of optimal solutions was presented.


2021 ◽  
Vol 294 ◽  
pp. 01004
Author(s):  
Sonja Kallio ◽  
Monica Siroux

To reduce carbon and greenhouse gas emissions, the more efficient and environmentally friendly energy production in the building sector is required. The deployment of renewable energy based microcogeneration units in the decentralized hybrid energy systems is a part of the solution. The micro combined heat and power (micro-CHP), or co-generation, units produce simultaneously heat and electricity from a single fuel source at high efficiency and close to the consumption point. These units offer significant benefits: reduced primary energy consumption, reduced CO2 emissions, and avoidance of distribution losses due to central plant and network construction. The objective of this paper is to present a review of available renewable energy based micro-CHP systems and to focus on the biomass and solar based conversion devices. Finally, a novel hybrid renewable energy system is presented by coupling renewable energy sources, such as solar and biomass for micro-CHP.


Energies ◽  
2021 ◽  
Vol 14 (7) ◽  
pp. 1868
Author(s):  
Michail Katsivelakis ◽  
Dimitrios Bargiotas ◽  
Aspassia Daskalopulu ◽  
Ioannis P. Panapakidis ◽  
Lefteri Tsoukalas

Hybrid Renewable Energy Systems (HRES) are an attractive solution for the supply of electricity in remote areas like islands and communities where grid extension is difficult. Hybrid systems combine renewable energy sources with conventional units and battery storage in order to provide energy in an off-grid or on-grid system. The purpose of this study is to examine the techno-economical feasibility and viability of a hybrid system in Donoussa island, Greece, in different scenarios. A techno-economic analysis was conducted for a hybrid renewable energy system in three scenarios with different percentages of adoption rate (20%, 50% and 100%)and with different system configurations. Using HOMER Pro software the optimal system configuration between the feasible configurations of each scenario was selected, based on lowest Net Present Cost (NPC), minimum Excess Electricity percentage, and Levelized Cost of Energy (LCoE). The results obtained by the simulation could offer some operational references for a practical hybrid system in Donoussa island. The simulation results confirm the application of a hybrid system with 0% of Excess Electricity, reasonable NPC and LCoE and a decent amount of renewable integration.


2021 ◽  
Vol 3 (1) ◽  
Author(s):  
Franck Armel Talla Konchou ◽  
Hermann Djeudjo Temene ◽  
René Tchinda ◽  
Donatien Njomo

AbstractHybrid Renewable Energy System is a very good solution to the energy deficit encounter in developing countries. The paper presents the optimal design of a hybrid renewable energy system regarding the technical aspect that is Loss of Power Supply Probability (LPSP), economic aspect that is Cost of Electricity (COE) and Net Present Cost (NPC) and environmental aspect that is Total Greenhouse gases emission (TGE) aspects using a multi-objective Particle Swarm Optimization algorithm for a Community multimedia center in MAKENENE, Cameroon. Optimal configurations including Photovoltaic (PV), Wind, Battery and Diesel generator (DG), separated into Scenarios 1–7 of hybrid energy systems are tested to have the most appropriate Scenario. Scenario 3 (Hybrid system with PV, Battery and DG) with Loss of Power Supply Probability, Cost of Electricity, Net Present Cost and Emission of 0.003%, 0.132 $/kWh, 38,817.7 $ and 2.2 kg/year respectively is found to be the most appropriate for the Community multimedia center.


2019 ◽  
Vol 11 (16) ◽  
pp. 4282 ◽  
Author(s):  
Olubayo M. Babatunde ◽  
Josiah L. Munda ◽  
Yskandar Hamam

The use of a single criterion in the selection of the most suitable hybrid renewable energy system (HRES) has been reported to be inadequate in terms of sustainability. In order to fill this gap, this study presents a multi-criteria approach for the selection of HRES for a typical low-income household. The analysis is based on two energy demand scenarios viz: consumer demand based on energy efficient equipment (EET) and consumer energy demand without energy efficiency. The optimization of the HRES is performed using hybrid optimization of multiple energy renewables (HOMER) while the multi-criteria analysis is carried out using Criteria Importance Through Intercriteria Correlation (CRITIC) and the Technique for Order of Preference by Similarity to the Ideal Solution (TOPSIS). Results show that the optimal HRES alternative returned based on both energy demand scenarios is a PV/GEN/BAT system. The analysis further shows that a reduction of 44.6% in energy demand through EET leads to: 51.38% decrease in total net present cost, 11.90% decrease in cost of energy, 96.61% decrease in CO 2 emission and 193.94% increase in renewable fraction. Furthermore, the use of multi-criteria approach for HRES selection has an influence in the selection and ranking of the most suitable HRES alternatives. Overall, the application of EETs is environmentally and economically beneficial while the application of MCDM can help decision makers make a comprehensively informed decision on the selection of the most suitable HRES.


Sign in / Sign up

Export Citation Format

Share Document