An STATCOM-based Hybrid Shunt Compensation Scheme Capable of Damping Subsynchronous Resonance

Author(s):  
F. Reyhaneh Mehdizadeh ◽  
Daryoush Nazarpour

The paper presents the potential use of supplemental control of a new economical phase imbalanced shunt compensation concept for damping sub synchronous resonance (SSR) oscillations. In this scheme, the shunt capacitive compensation in one phase is created by using a Single-Phase Static Synchronous Compensator (STATCOM) in parallel with a fixed capacitor (Cc), and the other two phases are compensated by fixed shunt capacitor (C). The proposed arrangement would, certainly, be economically attractive when compared with a full three-phase STATCOM which have been used/proposed for power swings and SSR damping. SSR mitigation is achieved by introducing a supplemental signal into the control loops of single phase STATCOM. The validity and effectiveness of the proposed structure and supplemental control are demonstrated on a modified version of the IEEE second benchmark model for computer simulation of sub synchronous resonance by means of time domain simulation analysis using the Matlab program.

Author(s):  
F Reyhaneh Mehdizadeh ◽  
Daryoush Nazarpour

The paper presents the potential use of supplemental control of a new economical phase imbalanced shunt compensation concept for damping Sub Synchronous Resonance (SSR) oscillations. In this scheme, the shunt capacitive compensation in one phase is created by using a single-phase Static Synchronous Compensator (STATCOM) in parallel with a fixed capacitor ( ), and the other two phases are compensated by fixed shunt capacitor (C). The proposed arrangement would, certainly, be economically attractive when compared with a full three-phase STATCOM which have been used/proposed for power swings and SSR damping. SSR mitigation is achieved by introducing a supplemental signal into the control loops of single phase STATCOM. The validity and effectiveness of the proposed structure and supplemental control are demonstrated on a modified version of the IEEE second benchmark model for computer simulation of sub synchronous resonance by means of time domain simulation analysis using the Matlab program.


2020 ◽  
Vol 53 (5-6) ◽  
pp. 884-891
Author(s):  
Zonglu Zhang

The voltage sag problem in a power grid can be solved by a voltage regulator. In this study, the voltage regulator based on thyristor was used to compensate the single-phase and three-phase voltage of voltage sag fault, so as to recover the normal level of voltage. The simulation analysis was carried out on MATLAB. The results showed that voltage sag faults mainly affected the amplitude of voltage, but not the frequency of voltage. After voltage regulation, the single-phase and three-phase voltage waveforms in the fault period had a certain recovery, but the voltage regulator had a certain hysteresis effect.


2011 ◽  
Vol 383-390 ◽  
pp. 2287-2292
Author(s):  
Yong Yuan Wang ◽  
Sheng Hui Liu ◽  
Wen Ze Liu ◽  
Ke Ying Wang

The shunt power capacitors are used as a reactive compensator while vacuum circuit breakers are used to switch shunt capacitors in power grid. To research the high over-voltage during switching off the shunt capacitors and a vacuum circuit beaker restriked, the restriking model is built with three-phase vacuum circuit breakers, considering the capacitors’ energy storage characteristic and asynchronous operating. The over-voltage is harmful to the insulation and life-circle of the equipments and even threatens power system safe and stabile operation. The variation trends of both recovery voltage between the contacts and the capacitors voltage are theoretically deduced. The model based on a 220kV substation of Guangdong grid was built and the most serious case that breakers are restriked in two phases are numbered with EMTP. Compared with theoretical results, simulation results are valid and practical.


Energies ◽  
2019 ◽  
Vol 12 (24) ◽  
pp. 4705 ◽  
Author(s):  
Wei-Neng Chang ◽  
Ching-Huan Liao

This paper proposes a newly developed single-delta bridge-cell, modular multilevel cascade converter (SDBC-MMCC)-based distribution-level static synchronous compensator (DSTATCOM) for single-phase load compensation in three-phase, three-wire electric power distribution systems. Each main circuit arm of the DSTATCOM uses a modular multilevel cascade converter based on full-H-bridge (FHB) cells. The three main DSTATCOM arms are delta-connected to allow phase-independent operations for phase balancing and unity power factor correction of the single-phase load in three-phase, three-wire electric power distribution systems. By using the symmetrical components method, a feedforward compensation algorithm was employed for the DSTATCOM. A simulation of the DSTATCOM was performed for functioning verification. Finally, a hardware test system was built by using a multi-DSP-based control system. The test results verified the effectiveness of the proposed SDBC-MMCC-based DSTATCOM in single-phase load compensation.


2014 ◽  
Vol 7 (1) ◽  
pp. 28-33 ◽  
Author(s):  
Alexander Suzdalenko ◽  
Janis Zakis ◽  
Ingars Steiks

Abstract The current measurement is becoming a challenging task in power converters operating at high switching frequencies, moreover traditional control system requires two control loops - first (slow) regulates DC-link voltage, second (fast) controls the shape of current, that all together results in complicated transfer function and long transition periods. The current sensorless control (CSC) allows neglecting the mentioned problems. This research for the first time presents the solution of CSC implementation in single-phase three-level neutral point clamped inverter. Mathematical equations were defined for inductor current peaks and transistor conduction time during discontinuous and continuous conduction modes, as well as major problem of current fitting between different voltage levels (consequently with different current peak-to-peak values) was solved, providing two solutions - pre-fitting and post-fitting trajectories. The verification of our theoretical assumptions and analytical equations was confirmed by the simulation analysis. Challenges of real experiments are discussed in the conclusion.


2011 ◽  
Vol 399-401 ◽  
pp. 32-35
Author(s):  
Yi Yuan Tang ◽  
Fu Hua Ma ◽  
Hua Jiang

Zirconium rich corner’s isothermal section of the Zr-Sn-Nb system at 450°C was determined by using X-ray diffraction. Experiment results showed that this isothermal section consisted of 2 three-phase region: ((βNb) + Zr4Sn + (αZr)) and (Zr4Sn + (βNb) + Zr5Sn3), 3 two-phases region: ((βNb) + (αZr)), (Zr4Sn + Zr5Sn3) and (Zr4Sn + (αZr)), and 4 single-phase region: (βNb), (αZr), Zr4Sn, Zr5Sn3.


2015 ◽  
Vol 135 (3) ◽  
pp. 168-180 ◽  
Author(s):  
Ryota Mizutani ◽  
Hirotaka Koizumi ◽  
Kentaro Hirose ◽  
Kazunari Ishibashi

2020 ◽  
Vol 38 (8A) ◽  
pp. 1187-1199
Author(s):  
Qaed M. Ali ◽  
Mohammed M. Ezzalden

BLDC motors are characterized by electronic commutation, which is performed by using an electric three-phase inverter. The direct control system of the BLDC motor consists of double loops; including the inner-loop for current regulating and outer-loop for speed control. The operation of the current controller requires feedback of motor currents; the conventional current controller uses two current sensors on the ac side of the inverter to measure the currents of two phases, while the third current would be accordingly calculated. These two sensors should have the same characteristics, to achieve balanced current measurements. It should be noted that the sensitivity of these sensors changes with time. In the case of one sensor fails, both of them must be replaced. To overcome this problem, it is preferable to use one sensor instead of two. The proposed control system is based on a deadbeat predictive controller, which is used to regulate the DC current of the BLDC motor. Such a controller can be considered as digital controller mode, which has fast response, high precision and can be easily implemented with microprocessor. The proposed control system has been simulated using Matlab software, and the system is tested at a different operating condition such as low speed and high speed.


Sign in / Sign up

Export Citation Format

Share Document