scholarly journals Survey: energy efficient protocols using radio scheduling in wireless sensor network

Author(s):  
Deepa Mathew K. ◽  
Anita Jones

An efficient energy management scheme is crucial factor for design and implementation of any sensor network. Almost all sensor networks are structured with numerous small sized, low cost sensor devices which are scattered over the large area. To improvise the network performance by high throughput with minimum energy consumption, an energy efficient radio scheduling MAC protocol is effective solution, since MAC layer has the capability to collaborate with distributed wireless networks. The present survey study provides relevant research work towards radio scheduling mechanism in the design of energy efficient wireless sensor networks (WSNs). The various radio scheduling protocols are exist in the literature, which has some limitations. Therefore, it is require developing a new energy efficient radio scheduling protocol to perform multi tasks with minimum energy consumption (e.g. data transmission). The most of research studies paying more attention towards to enhance the overall network lifetime with the aim of using energy efficient scheduling protocol. In that context, this survey study overviews the different categories of MAC based radio scheduling protocols and those protocols are measured by evaluating their data transmission capability, energy efficiency, and network performance. With the extensive analysis of existing works, many research challenges are stated. Also provides future directions for new WSN design at the end of this survey.

2013 ◽  
Vol 660 ◽  
pp. 124-129
Author(s):  
Yu Yang Peng ◽  
Jaeho Choi ◽  
Zi Chen Ren ◽  
Jae Ho Choi

For wireless sensor networks, energy efficiency is one of the most important subjects in recent research. In this paper, an energy-efficient multi-hop scheme based on cooperative MIMO (multiple-input multiple-output) technique is proposed for wireless sensor networks. Different from other papers, we consider a single cluster transmission scenario in which energy consumption is optimized by selecting the hop length and modulation constellation size. The optimal energy consumption formula is derived and proved mathematically. In addition, the minimum energy consumption per bit is calculated numerically.


2020 ◽  
Author(s):  
Ademola Abidoye ◽  
Boniface Kabaso

Abstract Wireless sensor networks (WSNs) have been recognized as one of the most essential technologies of the 21st century. The applications of WSNs are rapidly increasing in almost every sector because they can be deployed in areas where cable and power supply are difficult to use. In the literature, different methods have been proposed to minimize energy consumption of sensor nodes so as to prolong WSNs utilization. In this article, we propose an efficient routing protocol for data transmission in WSNs; it is called Energy-Efficient Hierarchical routing protocol for wireless sensor networks based on Fog Computing (EEHFC). Fog computing is integrated into the proposed scheme due to its capability to optimize the limited power source of WSNs and its ability to scale up to the requirements of the Internet of Things applications. In addition, we propose an improved ant colony optimization (ACO) algorithm that can be used to construct optimal path for efficient data transmission for sensor nodes. The performance of the proposed scheme is evaluated in comparison with P-SEP, EDCF, and RABACO schemes. The results of the simulations show that the proposed approach can minimize sensor nodes’ energy consumption, data packet losses and extends the network lifetime


2018 ◽  
Vol 7 (2.27) ◽  
pp. 132
Author(s):  
Avneet Kaur ◽  
Neeraj Sharma

The wireless sensor is deployed to sense large amount of data from the far places. With the large deployment of the sensor networks, it faces major issues like energy consumption, dynamic routing and security. The Energy efficient structure-free data aggregation and delivery (ESDAD) is the protocol which is hierarchal in nature. The ESDAD protocol can be further improved to increase lifetime of wireless sensor networks. The base station localizes the position of each sensor node and defines level of each node for the data transmission. In the ESDAD protocol, the next hop node is selected based on cost function for the data transmission. In this research work, improved in ESDAD protocol is proposed in which gateway nodes are deployed after each level for the data transmission. The sensor node will sense the information and transmit it to gateway node. The gateway node aggregates data to the base station and simulation results show that improved ESDAD protocol performs well in terms of energy consumption and number of throughput. 


2013 ◽  
Vol 4 (2) ◽  
pp. 267-272
Author(s):  
Dr. Deepali Virmani

Optimizing and enhancing network lifetime with minimum energy consumption is the major challenge in field of wireless sensor networks. Existing techniques for optimizing network lifetime are based on exploiting node redundancy, adaptive radio transmission power and topology control. Topology control protocols have a significant impact on network lifetime, available energy and connectivity. In this paper we categorize sensor nodes as strong and weak nodes based on their residual energy as well as operational lifetime and propose a Maximizing Network lifetime Operator (MLTO) that defines cluster based topology control mechanism to enhance network lifetime while guarantying the minimum energy consumption and minimum delay. Extensive simulations in Java-Simulator (J-Sim) show that our proposed operator outperforms the existing protocols in terms of various performance metrics life network lifetime, average delay and minimizes energy utilization.


2016 ◽  
Vol 42 (7) ◽  
pp. 2631-2639 ◽  
Author(s):  
Abdelhay Ali ◽  
Mohammed Abo-Zahhad ◽  
Mohammed Farrag

2017 ◽  
Vol 13 (7) ◽  
pp. 155014771771718 ◽  
Author(s):  
Arshad Sher ◽  
Nadeem Javaid ◽  
Irfan Azam ◽  
Hira Ahmad ◽  
Wadood Abdul ◽  
...  

In this article, to monitor the fields with square and circular geometries, three energy-efficient routing protocols are proposed for underwater wireless sensor networks. First one is sparsity-aware energy-efficient clustering, second one is circular sparsity-aware energy-efficient clustering, and the third one is circular depth–based sparsity-aware energy-efficient clustering routing protocol. All three protocols are proposed to minimize the energy consumption of sparse regions, whereas sparsity search algorithm is proposed to find sparse regions and density search algorithm is used to find dense regions of the network field. Moreover, clustering is performed in dense regions to minimize redundant transmissions of a data packet, while sink mobility is exploited to collect data from sensor nodes with an objective of minimum energy consumption. A depth threshold [Formula: see text] value is also used to minimize number of hops between source and destination for less energy consumption. Simulation results show that our schemes perform better than their counter-part schemes (depth-based routing and energy-efficient depth-based routing) in terms of energy efficiency.


Sign in / Sign up

Export Citation Format

Share Document