scholarly journals IESDAD :improved energy efficient structure- free data aggregation and delivery protocol in WSN

2018 ◽  
Vol 7 (2.27) ◽  
pp. 132
Author(s):  
Avneet Kaur ◽  
Neeraj Sharma

The wireless sensor is deployed to sense large amount of data from the far places. With the large deployment of the sensor networks, it faces major issues like energy consumption, dynamic routing and security. The Energy efficient structure-free data aggregation and delivery (ESDAD) is the protocol which is hierarchal in nature. The ESDAD protocol can be further improved to increase lifetime of wireless sensor networks. The base station localizes the position of each sensor node and defines level of each node for the data transmission. In the ESDAD protocol, the next hop node is selected based on cost function for the data transmission. In this research work, improved in ESDAD protocol is proposed in which gateway nodes are deployed after each level for the data transmission. The sensor node will sense the information and transmit it to gateway node. The gateway node aggregates data to the base station and simulation results show that improved ESDAD protocol performs well in terms of energy consumption and number of throughput. 

2021 ◽  
Author(s):  
Jenice Prabu A ◽  
Hevin Rajesh D

Abstract In Wireless sensor network, the major issues are security and energy consumption. There may be several numbers of malicious nodes present in sensor networks. Several techniques have been proposed by the researchers to identify these malicious nodes. WSNs contain many sensor nodes that sense their environment and also transmit their data via multi-hop communication schemes to the base station. These sensor nodes provides power supply using battery and the energy consumption of these batteries must be low. Securing the data is to avoid attacks on these nodes and data communication. The aggregation of data helps to minimize the amount of messages transmitted within the network and thus reduces overall network energy consumption. Moreover, the base station may distinguish the encrypted and aggregated data based on the encryption keys during the decryption of the aggregated data. In this paper, two aspects of the problem is concerned, we investigate the efficiency of data aggregation: first, how to develop cluster-based routing algorithms to achieve the lowest energy consumption for aggregating data, and second, security issues in wsn. By using Network simulator2 (NS2) this scheme is simulated. In the proposed scheme, energy consumption, packet delivery ratio and throughput is analyzed. The proposed clustering, routing, and protection protocol based on the MCSDA algorithm shows significant improvement over the state-of - the-art protocol.


Author(s):  
Fuseini Jibreel ◽  
Emmanuel Tuyishimire ◽  
I M Daabo

Wireless Sensor Networks (WSNs) continue to provide essential services for various applications such as surveillance, data gathering, and data transmission from the hazardous environments to safer destinations. This has been enhanced by the energy-efficient routing protocols that are mostly designed for such purposes. Gateway-based Energy-Aware Multi-hop Routing protocol (MGEAR) is one of the homogenous routing schemes that was recently designed to more efficiently reduce the energy consumption of distant nodes. However, it has been found that the protocol has a high energy consumption rate, lower stability period, less data transmission to the Base station (BS). In this paper, an enhanced Heterogeneous Gateway-based Energy-Aware multi-hop routing protocol ( HMGEAR) is proposed. The proposed routing scheme is based on the introduction of heterogeneous nodes in the existing scheme, selection of the head based on the residual energy, introduction of multi-hop communication strategy in all the regions of the network, and implementation of energy hole elimination technique. Results show that the proposed routing scheme outperforms two existing ones.


2020 ◽  
Author(s):  
Ademola Abidoye ◽  
Boniface Kabaso

Abstract Wireless sensor networks (WSNs) have been recognized as one of the most essential technologies of the 21st century. The applications of WSNs are rapidly increasing in almost every sector because they can be deployed in areas where cable and power supply are difficult to use. In the literature, different methods have been proposed to minimize energy consumption of sensor nodes so as to prolong WSNs utilization. In this article, we propose an efficient routing protocol for data transmission in WSNs; it is called Energy-Efficient Hierarchical routing protocol for wireless sensor networks based on Fog Computing (EEHFC). Fog computing is integrated into the proposed scheme due to its capability to optimize the limited power source of WSNs and its ability to scale up to the requirements of the Internet of Things applications. In addition, we propose an improved ant colony optimization (ACO) algorithm that can be used to construct optimal path for efficient data transmission for sensor nodes. The performance of the proposed scheme is evaluated in comparison with P-SEP, EDCF, and RABACO schemes. The results of the simulations show that the proposed approach can minimize sensor nodes’ energy consumption, data packet losses and extends the network lifetime


Author(s):  
Ajay Kaushik ◽  
S. Indu ◽  
Daya Gupta

Wireless sensor networks (WSNs) are becoming increasingly popular due to their applications in a wide variety of areas. Sensor nodes in a WSN are battery operated which outlines the need of some novel protocols that allows the limited sensor node battery to be used in an efficient way. The authors propose the use of nature-inspired algorithms to achieve energy efficient and long-lasting WSN. Multiple nature-inspired techniques like BBO, EBBO, and PSO are proposed in this chapter to minimize the energy consumption in a WSN. A large amount of data is generated from WSNs in the form of sensed information which encourage the use of big data tools in WSN domain. WSN and big data are closely connected since the large amount of data emerging from sensors can only be handled using big data tools. The authors describe how the big data can be framed as an optimization problem and the optimization problem can be effectively solved using nature-inspired algorithms.


2014 ◽  
Vol 2014 ◽  
pp. 1-7 ◽  
Author(s):  
Hedieh Sajedi ◽  
Zahra Saadati

In recent years, wireless sensor networks have been used for various applications such as environmental monitoring, military and medical applications. A wireless sensor network uses a large number of sensor nodes that continuously collect and send data from a specific region to a base station. Data from sensors are collected from the study area in the common scenario of sensor networks. Afterward, sensed data is sent to the base station. However, neighboring sensors often lead to redundancy of data. Transmission of redundant data to the base station consumes energy and produces traffic, because process is run in a large network. Data aggregation was proposed in order to reduce redundancy in data transformation and traffic. The most popular communication protocol in this field is cluster based data aggregation. Clustering causes energy balance, but sometimes energy consumption is not efficient due to the long distance between cluster heads and base station. In another communication protocol, which is based on a tree construction, because of the short distance between the sensors, energy consumption is low. In this data aggregation approach, since each sensor node is considered as one of the vertices of a tree, the depth of tree is usually high. In this paper, an efficient hierarchical hybrid approach for data aggregation is presented. It reduces energy consumption based on clustering and minimum spanning tree. The benefit of combining clustering and tree structure is reducing the disadvantages of previous structures. The proposed method firstly employs clustering algorithm and then a minimum spanning tree is constructed based on cluster heads. Our proposed method was compared to LEACH which is a well-known data aggregation method in terms of energy consumption and the amount of energy remaining in each sensor network lifetime. Simulation results indicate that our proposed method is more efficient than LEACH algorithm considering energy consumption.


2018 ◽  
Vol 19 (1) ◽  
pp. 72-90
Author(s):  
Seyed Mohammad Bagher Musavi Shirazi ◽  
Maryam Sabet ◽  
Mohammad Reza Pajoohan

Wireless sensor networks (WSNs) are a new generation of networks typically consisting of a large number of inexpensive nodes with wireless communications. The main purpose of these networks is to collect information from the environment for further processing. Nodes in the network have been equipped with limited battery lifetime, so energy saving is one of the major issues in WSNs. If we balance the load among cluster heads and prevent having an extra load on just a few nodes in the network, we can reach longer network lifetime. One solution to control energy consumption and balance the load among nodes is to use clustering techniques. In this paper, we propose a new distributed energy-efficient clustering algorithm for data aggregation in wireless sensor networks, called Distributed Clustering for Data Aggregation (DCDA). In our new approach, an optimal transmission tree is constructed among sensor nodes with a new greedy method. Base station (BS) is the root, cluster heads (CHs) and relay nodes are intermediate nodes, and other nodes (cluster member nodes) are the leaves of this transmission tree. DCDA balances load among CHs in intra-cluster and inter-cluster data communications using different cluster sizes. For efficient inter-cluster communications, some relay nodes will transfer data between CHs. Energy consumption, distance to the base station, and cluster heads’ centric metric are three main adjustment parameters for the cluster heads election. Simulation results show that the proposed protocol leads to the reduction of individual sensor nodes’ energy consumption and prolongs network lifetime, in comparison with other known methods. ABSTRAK: Rangkaian sensor wayarles (WSN) adalah rangkaian generasi baru yang terdiri daripada nod-nod murah komunikasi wayarles. Tujuan rangkaian-rangkaian ini adalah bagi mengumpul maklumat sekeliling untuk proses seterusnya. Nod dalam rangkaian ini dilengkapi bateri kurang jangka hayat, jadi simpanan tenaga adalah satu isu besar dalam WSN. Jika beban diimbang antara induk kelompok dan lebihan beban dihalang pada setiap rangkaian iaitu hanya sebilangan kecil nod pada tiap-tiap kelompok,  jangka hayat dapat dipanjangkan pada sesebuah rangkaian. Satu penyelesaian adalah dengan mengawal penggunaan tenaga dan mengimbangi beban antara nod menggunakan teknik berkelompok. Kajian ini mencadangkan kaedah baru pembahagian tenaga berkesan secara algoritma berkelompok bagi pembahagian data dalam WSN, dikenali sebagai Pembahagian Kelompok Kumpulan Data (DCDA). Melalui pendekatan baru ini, pokok transmisi optimum dibina antara nod sensor melalui kaedah baru. Stesen utama (BS) ialah akar, induk kelompok-kelompok (CHs) dan nod penyiar ialah nod perantara, dan nod-nod lain (nod-nod ahli kelompok) ialah daun bagi pokok trasmisi. DCDA mengimbangi beban CHs antara-kelompok dan dalam-kelompok komunikasi data daripada kelompok berbeza saiz. Bagi komunikasi berkesan dalam-kelompok, sebahagian nod penyampai akan memindahkan data antara CHs. Penggunaan tenaga, jarak ke stesen utama dan induk kelompok metrik sentrik adalah tiga parameter pelaras bagi pemilihan induk kelompok. Keputusan simulasi protokol yang dicadang menunjukkan pengurangan penggunaan tenaga pada nod-nod sensor individu dan memanjangkan jangka hayat rangkaian, berbanding kaedah-kaedah lain yang diketahui.


2014 ◽  
Vol 626 ◽  
pp. 20-25
Author(s):  
K. Kalaiselvi ◽  
G.R. Suresh

In wireless sensor networks Energy-efficient routing is an important issue due to the limited battery power within the network, Energy consumption is one of the important performance factors. Specifically for the election of cluster head selection and distance between the cluster head node and base station. The main objective of this proposed system is to reduce the energy consumption and prolong the network lifetime. This paper introduces a new clustering algorithm for energy efficient routing based on a cluster head selection


2021 ◽  
pp. 1-11
Author(s):  
Shu Zhang ◽  
Jianhua Chen

This paper provides an in-depth analysis of the optimization of energy-efficient dynamic task allocation in wireless sensor networks through an improved particle swarm optimization algorithm, and introduces the idea of software-defined networking into wireless sensor network to propose a software-defined wireless sensor network non-uniform cluster routing protocol. The protocol decouples the data layer from the control layer, and the base station performs the cluster head election, network clustering, and routing control operations. The base station optimizes the cluster head election process by electing cluster head nodes using an improved particle cluster algorithm. Based on the elected cluster head nodes, the base station calculates their corresponding contention radius and plans the data transmission path. The results of the calculation are sent to the corresponding nodes for cluster creation and data transmission. The simulation results fully show that the use of this protocol can achieve the purpose of significantly extending the service life of the network. This paper comprehensively analyses the whole process of mobile charging of UAVs under improved conditions and proposes a path planning algorithm. The multi-level weighted charging path planning proposed in this paper considers both fairness and timeliness. Finally, the paper verifies the effectiveness of the algorithm.


2017 ◽  
Vol 7 (1.1) ◽  
pp. 594
Author(s):  
P. Balamurugan ◽  
M. Shyamala Devi ◽  
V. Sharmila

At present scenario, sensor devices are used in various fields for gathering information so all those data should be secured safely. Securing data is an important role in Wireless Sensor Networks (WSN). WSN is extremely essential for the purpose of reducing the complete redundancy and energy consumption during gathering data among sensor nodes. Optimized data aggregation is needed at cluster head and Base Station (BS) for secured data transmission. Data aggregation is performed in all routers while forwarding data from source to destination node. The complete life time of sensor networks is reducing because of using energy inefficient nodes for the purpose of aggregation. So this paper introduces the optimized methods for securing data (OMSD) which is trust based weights and also completely about the attacks and some methods for secured data transmission. 


2014 ◽  
Vol 556-562 ◽  
pp. 6311-6315
Author(s):  
Yong Qing Wang ◽  
Jing Tian Tang ◽  
Xing Po Ma

We study data aggregation for region-based top-k queries in wireless sensor networks, which is one kind of internet of things. Because the energy of sensor nodes is limited and a sensor node will die if it has no energy left, one of the important targets for all protocols in wireless sensor networks is to decrease the energy consumption of the sensor nodes. For a sensor node, communication cost is much more than other kinds of energy cost such as energy cost on computation and data storage. Thus, a very efficient way to decrease the energy cost of the sensor nodes is to decrease the quality of the sensing data that will be transmitted to the base station. In this paper, we use the technique of data aggregation to achieve this goal, and propose an algorithm to construct a novel Data Aggregation Tree (DAT) in the query region. To check the efficiency of DAT, we have made a simulation on OMNET, and the results show that DAT can shrink large quality of data when they are transmitted to the base station, and the life time of the sensor networks can thus be prolonged..


Sign in / Sign up

Export Citation Format

Share Document