scholarly journals Design modern structure for heterojunction quantum dot solar cells

Author(s):  
A. Thabet ◽  
S. Abdelhady ◽  
Youssef Mobarak

This paper proposal new structure for improving the optical, electrical characteristics and efficiency of 3rd generation heterojunction quantum dot solar cell (HJQDSC) (ITO/CdS/QDPbS/Au) model by using the quantum dot window layer instead of bulk structure layers cell. Also, this paper presents theoretically analysis for the performance of the proposal HJQDSC (ITO/QDCdS/QDPbS/Au) structure. The new design structure was applied on traditional (SnO2/CdS/CdTe/Cu) and (ZnO/CdS/CIGS/Mo) thin film solar cells which based on sub-micro absorber layer thickness models by replacing the bulk CdTe, CIGS absorber layers and CdS window layer with quantum dot size materials to achieve higher efficiency with lesser usage layer material. Also, it has been studied the effect of using semiconductors layers in quantum dots size on electric and optical properties of thin film solar cells and the effect of window and absorber layers quantum dots radii on the performance of solar cells. Finally, a thermal efficiency analysis has been investigated for explaining the importance of new structure HJQD solar cells.

Author(s):  
Ahmed Thabet ◽  
Safaa Abdelhady ◽  
Youssef Mobarak

<span>This paper investigates on new design of heterojunction quantum dot (HJQD) photovoltaics solar cells CdS/PbS that is based on quantum dot metallics PbS core/shell absorber layer and quantum dot window layer. It has been enhanced the performance of traditional HJQD thin film solar cells model based on quantum dot absorber layer and bulk window layer. The new design has been used sub-micro absorber layer thickness to achieve high efficiency with material reduction, low cost, and time. Metallics-semiconductor core/shell absorber layer has been succeeded for improving the optical characteristics such energy band gap and the absorption of absorber layer materials, also enhancing the performance of HJQD ITO/CdS/QDPbS/Au, sub micro thin film solar cells. Finally, it has been formulating the quantum dot (QD) metallic cores concentration effect on the absorption, energy band gap and electron-hole generation rate in absorber layers, external quantum efficiency, energy conversion efficiency, fill factor of the innovative design of HJQD cells.</span>


2013 ◽  
Author(s):  
Khagendra P. Bhandari ◽  
Hasitha Mahabaduge ◽  
Jianbo Gao ◽  
Randy J. Ellingson

2021 ◽  
Vol 12 (1) ◽  
Author(s):  
Long Hu ◽  
Qian Zhao ◽  
Shujuan Huang ◽  
Jianghui Zheng ◽  
Xinwei Guan ◽  
...  

AbstractAll-inorganic CsPbI3 perovskite quantum dots have received substantial research interest for photovoltaic applications because of higher efficiency compared to solar cells using other quantum dots materials and the various exciting properties that perovskites have to offer. These quantum dot devices also exhibit good mechanical stability amongst various thin-film photovoltaic technologies. We demonstrate higher mechanical endurance of quantum dot films compared to bulk thin film and highlight the importance of further research on high-performance and flexible optoelectronic devices using nanoscale grains as an advantage. Specifically, we develop a hybrid interfacial architecture consisting of CsPbI3 quantum dot/PCBM heterojunction, enabling an energy cascade for efficient charge transfer and mechanical adhesion. The champion CsPbI3 quantum dot solar cell has an efficiency of 15.1% (stabilized power output of 14.61%), which is among the highest report to date. Building on this strategy, we further demonstrate a highest efficiency of 12.3% in flexible quantum dot photovoltaics.


2013 ◽  
Vol 103 (7) ◽  
pp. 073903 ◽  
Author(s):  
Hyung Hwan Jung ◽  
Jung-Dae Kwon ◽  
Sunghun Lee ◽  
Chang Su Kim ◽  
Kee-Seok Nam ◽  
...  

2017 ◽  
Vol 34 (11) ◽  
pp. 1700133 ◽  
Author(s):  
Apichat Pangdam ◽  
Supeera Nootchanat ◽  
Chutiparn Lertvachirapaiboon ◽  
Ryousuke Ishikawa ◽  
Kazunari Shinbo ◽  
...  

2012 ◽  
pp. 297-316
Author(s):  
Kimberly A. Sablon ◽  
V. Mitin ◽  
J. W. Little ◽  
A. Sergeev ◽  
N. Vagidov

Solar RRL ◽  
2019 ◽  
Vol 3 (10) ◽  
pp. 1900225 ◽  
Author(s):  
Liping Guo ◽  
Baiyu Zhang ◽  
Smriti Ranjit ◽  
Jacob Wall ◽  
Swapnil Saurav ◽  
...  

Chem ◽  
2019 ◽  
Vol 5 (7) ◽  
pp. 1692-1694 ◽  
Author(s):  
Kamalpreet Singh ◽  
Oleksandr Voznyy

Energies ◽  
2019 ◽  
Vol 12 (6) ◽  
pp. 1123 ◽  
Author(s):  
Guanggen Zeng ◽  
Xia Hao ◽  
Shengqiang Ren ◽  
Lianghuan Feng ◽  
Qionghua Wang

The application of thinner cadmium sulfide (CdS) window layer is a feasible approach to improve the performance of cadmium telluride (CdTe) thin film solar cells. However, the reduction of compactness and continuity of thinner CdS always deteriorates the device performance. In this work, transparent Al2O3 films with different thicknesses, deposited by using atomic layer deposition (ALD), were utilized as buffer layers between the front electrode transparent conductive oxide (TCO) and CdS layers to solve this problem, and then, thin-film solar cells with a structure of TCO/Al2O3/CdS/CdTe/BC/Ni were fabricated. The characteristics of the ALD-Al2O3 films were studied by UV–visible transmittance spectrum, Raman spectroscopy, and atomic force microscopy (AFM). The light and dark J–V performances of solar cells were also measured by specific instrumentations. The transmittance measurement conducted on the TCO/Al2O3 films verified that the transmittance of TCO/Al2O3 were comparable to that of single TCO layer, meaning that no extra absorption loss occurred when Al2O3 buffer layers were introduced into cells. Furthermore, due to the advantages of the ALD method, the ALD-Al2O3 buffer layers formed an extremely continuous and uniform coverage on the substrates to effectively fill and block the tiny leakage channels in CdS/CdTe polycrystalline films and improve the characteristics of the interface between TCO and CdS. However, as the thickness of alumina increased, the negative effects of cells were gradually exposed, especially the increase of the series resistance (Rs) and the more serious “roll-over” phenomenon. Finally, the cell conversion efficiency (η) of more than 13.0% accompanied by optimized uniformity performances was successfully achieved corresponding to the 10 nm thick ALD-Al2O3 thin film.


Sign in / Sign up

Export Citation Format

Share Document