scholarly journals Ultra-optical characterization of thin film solar cells materials using core/shell absorber layer

Author(s):  
Ahmed Thabet ◽  
Safaa Abdelhady ◽  
Youssef Mobarak

<span>This paper investigates on new design of heterojunction quantum dot (HJQD) photovoltaics solar cells CdS/PbS that is based on quantum dot metallics PbS core/shell absorber layer and quantum dot window layer. It has been enhanced the performance of traditional HJQD thin film solar cells model based on quantum dot absorber layer and bulk window layer. The new design has been used sub-micro absorber layer thickness to achieve high efficiency with material reduction, low cost, and time. Metallics-semiconductor core/shell absorber layer has been succeeded for improving the optical characteristics such energy band gap and the absorption of absorber layer materials, also enhancing the performance of HJQD ITO/CdS/QDPbS/Au, sub micro thin film solar cells. Finally, it has been formulating the quantum dot (QD) metallic cores concentration effect on the absorption, energy band gap and electron-hole generation rate in absorber layers, external quantum efficiency, energy conversion efficiency, fill factor of the innovative design of HJQD cells.</span>

2019 ◽  
Vol 966 ◽  
pp. 398-403
Author(s):  
Yoyok Cahyono ◽  
Novita Dwi Purnamasari ◽  
Mochamad Zainuri ◽  
Suminar Pratapa ◽  
Darminto

Effect of defect - through observation of energy absorption Urbach, on deposition rate, energy band gap, and surface roughness of intrinsic thin film are investigated using Radio Frequency Plasma Enhance Chemical Vapor Deposition (RF-PECVD). Films are grown on ITO (Indium Tin Oxide) glass substrate. Analysis of energy band gap is conducted to determine changes in the structure of a thin film of a-Si:H. Energy band gap is important to determine the portion of the spectrum of sunlight that is absorbed solar cells. From the characterization using UV-Vis spectrometer and the Tauc’s plot method, the width of the resulting energy band gap is greater if the hydrogen dilution is increased. It can be shown that the increase of the hydrogen dilution, will increase the energy band gap, and the surface roughness of thin layers. Instead, the improvement of the hydrogen dilution decrease the rate of deposition and Urbach energy. It is estimated that with greater hydrogen dilution, an intrinsic thin film of a-Si:H is more conductive for more reduction in residual of band tail defects or dangling bond defects.


Author(s):  
A. Thabet ◽  
S. Abdelhady ◽  
Youssef Mobarak

This paper proposal new structure for improving the optical, electrical characteristics and efficiency of 3rd generation heterojunction quantum dot solar cell (HJQDSC) (ITO/CdS/QDPbS/Au) model by using the quantum dot window layer instead of bulk structure layers cell. Also, this paper presents theoretically analysis for the performance of the proposal HJQDSC (ITO/QDCdS/QDPbS/Au) structure. The new design structure was applied on traditional (SnO2/CdS/CdTe/Cu) and (ZnO/CdS/CIGS/Mo) thin film solar cells which based on sub-micro absorber layer thickness models by replacing the bulk CdTe, CIGS absorber layers and CdS window layer with quantum dot size materials to achieve higher efficiency with lesser usage layer material. Also, it has been studied the effect of using semiconductors layers in quantum dots size on electric and optical properties of thin film solar cells and the effect of window and absorber layers quantum dots radii on the performance of solar cells. Finally, a thermal efficiency analysis has been investigated for explaining the importance of new structure HJQD solar cells.


2013 ◽  
Author(s):  
Khagendra P. Bhandari ◽  
Hasitha Mahabaduge ◽  
Jianbo Gao ◽  
Randy J. Ellingson

2021 ◽  
Vol 868 ◽  
pp. 159253
Author(s):  
Andrea Ruiz-Perona ◽  
Galina Gurieva ◽  
Michael Sun ◽  
Tim Kodalle ◽  
Yudania Sánchez ◽  
...  

2015 ◽  
Vol 107 (10) ◽  
pp. 103902 ◽  
Author(s):  
Darren C. J. Neo ◽  
Samuel D. Stranks ◽  
Giles E. Eperon ◽  
Henry J. Snaith ◽  
Hazel E. Assender ◽  
...  

2001 ◽  
Vol 668 ◽  
Author(s):  
J. Fritsche ◽  
S. Gunst ◽  
A. Thiβen ◽  
R. Gegenwart ◽  
A. Klein ◽  
...  

ABSTRACTTin dioxide (SnO2) coated glass is the commonly used substrate for thin film solar cells based on CdTe absorbers. We have investigated the properties of the CdS/SnO2 interface by X-ray and ultraviolet photoelectron spectroscopy. SnO2 coated glass substrates as used for solar cell preparation were cleaned by different procedures such as derinsing, sputtering, heating and annealing in oxygen atmosphere. Different surface properties with a strongly dependent number of defects in the SnO2 band gap are identified. CdS films were deposited stepwise by thermal evaporation to determine the electronic interface properties for different surface preparation conditions. Comparative barrier heights at the CdSSnO2 contact are found for most surface pretreatments. The Fermi level position in these cases is situated in the SnO2 band gap. A different interface behaviour is determined for sputter cleaned SnO2 surfaces, which is attributed to the formation of oxygen vacancies during sputtering and subsequent formation of an interfacial SnOxSy compound.


2014 ◽  
Vol 47 (13) ◽  
pp. 135105 ◽  
Author(s):  
Se Jin Park ◽  
Yunae Cho ◽  
Sung Hwan Moon ◽  
Ji Eun Kim ◽  
Doh-Kwon Lee ◽  
...  

2013 ◽  
Vol 103 (7) ◽  
pp. 073903 ◽  
Author(s):  
Hyung Hwan Jung ◽  
Jung-Dae Kwon ◽  
Sunghun Lee ◽  
Chang Su Kim ◽  
Kee-Seok Nam ◽  
...  

2019 ◽  
Vol 466 ◽  
pp. 358-366 ◽  
Author(s):  
Ashwini B. Rohom ◽  
Priyanka U. Londhe ◽  
Jeong In Han ◽  
Nandu B. Chaure

Sign in / Sign up

Export Citation Format

Share Document