scholarly journals Design and testing of a dynamic reactive signage network towards fire emergency evacuations

Author(s):  
Christopher S. Baidal ◽  
Nestor X. Arreaga ◽  
Vladimir Sanchez Padilla

The loss of several lives happens in events of natural disasters, due to the strength of nature or the static evacuation routes that usually directs towards a unique exit pathway. This paper proposes the integration of technology tools such as servers and open-source sensors into a reactive signage network to provide an updated and dynamical emergency evacuation system focusing specifically on fire situations. This pilot project works using microcontrollers that capture and manages into a server the surrounding information, setting evacuation routes and behaving according to the Dijkstra algorithm allowing the identification of obstacles or possible incidents that occur spontaneously during an evacuation. This process sends updates to the server either the evacuation route keeps the same or if a modification is required based on the information provided by the sensors about different areas, warning the shortest path for evacuation using computer vision support.

2010 ◽  
Vol 133-134 ◽  
pp. 611-616 ◽  
Author(s):  
Gül Yücel ◽  
Görün Arun

The Grand Bazaar is a historical trade centre more than 500 years in the historical peninsula of Istanbul, Turkey. It consists of almost 3,600 small shops from different sectors (such as jewellery, carpet, leather, souvenir, finance, restaurant, café, confection etc.), two Bedesten, 64 street and 16 Han (inn) buildings. The Bazaar has 21 main gates that open to different streets and have different relation with outside. More than 25000 staff work in the shops and 300-500 thousand users come to Bazaar daily depending on the season and day. The pedestrian density is changeable, depending on the place of the inner street and the type of the sector. The historical disaster records (earthquake, dated 1766 and 1894, the grand bazaar fire, dated 1954) show that there was evacuation vulnerability. The main gates (exit doors) and exit route need some rehabilitation for safety evacuation during any disaster. The aim of this study is to evaluate the Grand Bazaar’s emergency evacuation vulnerability. The evacuation vulnerability factors question the width, length and natural illumination of the evacuation route, maintenance of the roof, presence of hazardous materials, door specifications as size, material, opening direction, maintenance and difference in elevation on the route and exit area such as staircase and thresholds.


1991 ◽  
Vol 6 (4) ◽  
pp. 463-466 ◽  
Author(s):  
Ralph B. Leonard

AbstractSome disasters produce circumstances that require the emergency removal of some or all of the citizens from a geographic area. Emergency or mass evacuation can be divided into immediate evacuation, in which the citizens are given no warning of their need to evacuate, and potential evacuation, in which citizens are given time (usually a day or two) to evacuate. The mass evacuation aspect of disaster planning frequently is neglected, but must be planned in detail. An essential ingredient of a plan is the designation of a person who has the authority to order an evacuation and that that person or an authorized alternate, is available instantly 24 hours a day. The plans should identify likely scenarios which could require emergency evacuation for a given community requiring, means of communicating with the citizens, evacuation routes, evacuation mechanisms, and shelter arrangements. All plans need to take into account human behavior during such a stressful situation.


2020 ◽  
Vol 2020 ◽  
pp. 1-12 ◽  
Author(s):  
Hui Xu ◽  
Cheng Tian ◽  
Yang Li

Rail transit stations with multifloor structures have been built in many cities to intensively utilize land resources and facilitate lives of community. However, being overcrowded with passengers results in high risks during daily operation. In response, this study conducted an emergency evacuation simulation and optimization in the three-dimensional (3D) space of “complex rail transit stations” (CRTSs). The aim of the paper is to provide a methodology to determine effective emergency evacuation strategies for CRTSs. The Lianglukou Rail Transit Station in Chongqing, China, was used as a case study and the AnyLogic simulation platform employed for simulating emergency evacuations. An emergency evacuation theoretical framework was established. The emergency evacuation strategies, including evacuation routes and evacuation times, were determined based on the theoretical demonstration. Simulation and optimization of emergency evacuation in the Lianglukou station were conducted. Accordingly, four main simulation results were obtained: (1) Escalators/stairs and turnstiles are key facilities in the evacuation; (2) Effective guidance for the evacuation is necessary in the public space of the station; (3) Passenger aggregation nodes should be guided for balanced evacuation; (4) Removing metal barriers is a useful evacuation optimization measure. The proposed research method and framework can be used by other CRTSs in the establishment of emergency evacuation strategies and effective optimization strategies to promote safety of transportation system. The research findings are beneficial to passengers in helping them provide valuable emergency evacuation guidance.


Land ◽  
2022 ◽  
Vol 11 (1) ◽  
pp. 82
Author(s):  
Bhabana Thapa ◽  
Teiji Watanabe ◽  
Dhananjay Regmi

Sudden floods frequently occur in the Himalayas under changing climates. Rapid glacial melt has resulted in the formation of glacial lakes and associated hazards. This research aimed to (1) identify flood-prone houses, (2) determine pedestrian emergency evacuation routes, and (3) analyze their relationships to socioeconomic status in the Seti River Basin. Detailed hazard maps were created using field survey results from unmanned aerial vehicle photogrammetry and the Hydrologic Engineering Center River Analysis System. Questionnaire, focus-group, and key-informant surveys helped identify the socioeconomic situation. Inundation maps revealed that most residents are exposed to future flooding hazards without proper evacuation routes. Highly impoverished and immigrant households were at the highest risk in terms of income inequality and migration rate (p < 0.001) and were located on the riverside. The locations of 455 laborers’ houses were significantly correlated with inundation hazards (p < 0.001). Governmental and associated agencies must develop adequate plans to relocate low-income households. Group discussions revealed the need for stronger adaptive capacity-building strategies for future risk management. Pokhara requires better systematic and scientific land-use planning strategies to address this issue efficiently. A similar approach that combines flood modeling, proper evacuation route access, and socioeconomic survey is suggested for this river basin.


Author(s):  
Dody Ichwana

Disaster is a sudden event, such as an accident or a natural catastrophe, that causes great damage or loss of life. Disasters can occur at any time, therefore a mechanism is needed to evacuate out of the building during a disaster. Generally public facilities have provided instructions and evacuation routes outside the building. Based on the severity of the disaster and the evacuation capability of the victim, the evacuation strategy can range from evacuation as soon as possible, evacuate slowly, move to a safe location inside the building or take refuge in the available protection room and wait for the rescue team to arrive. The algorithm for finding the shortest paths can be used to determine the evacuation route. But this path is still static, if the route damaged in then the evacuation route would become useless. The time for the evacuation process can also increase if the condition of the evacuation route is not known whether damaged or not. The solution to solve this problem is to make a system that can help find  the safest and shortest evacuation routes during emergencies. This system consist of microcontroller Arduino Mega to control the system and led for evacuation sign. The evacuation routes is determined by implementing dijkstra algorithm with priority queue to search the shortest path.


2020 ◽  
Vol 6 (1) ◽  
Author(s):  
Sophia Reinhardt ◽  
Joshua Schmidt ◽  
Michael Leuschel ◽  
Christiane Schüle ◽  
Jörg Schipper

AbstractDizziness is one of the most common symptoms in medicine. For differentiation of peripheral or central origin of the vertigo, history and clinical examination with detection of a nystagmus is essential. The aim of this study was to detect horizontal vestibular nystagmus utilizing a webcam. In the feasibility study, caloric induced vestibular nystagmus was recorded with conventional video-nystagmography and webcam. Analysis of recorded data was performed with a developed software which used computer vision techniques. A designed algorithm detected nystagmus existence and their direction. The software was evaluated by an expert-rated video-nystagmography. Webcam-based vestibular nystagmus detection is possible. Currently, a clinical application is not approved. Further software improvements are necessary to increase its accuracy.


2018 ◽  
Vol 10 (8) ◽  
pp. 2737 ◽  
Author(s):  
Yang Zou ◽  
Shuliang Zou ◽  
Changming Niu

An emergency evacuation route is an important component of emergency rescue of for nuclear accidents. A reasonable evacuation route can reduce evacuation times and protect people’s life. The evacuation route of the nuclear power plant is abstracted into a network diagram and a mathematical model of evacuation optimization route based on the graph theory and the parity of spot diagram method in this paper. Road traffic capacity and other external factors that may affect emergency evacuation are considered in the time weight factor for each road. Finally, an example is given to verify the feasibility of the model.


Author(s):  
W. Chan ◽  
C. Armenakis

The most common building evacuation approach currently applied is to have evacuation routes planned prior to these emergency events. These routes are usually the shortest and most practical path from each building room to the closest exit. The problem with this approach is that it is not adaptive. It is not responsively configurable relative to the type, intensity, or location of the emergency risk. Moreover, it does not provide any information to the affected persons or to the emergency responders while not allowing for the review of simulated hazard scenarios and alternative evacuation routes. In this paper we address two main tasks. The first is the modelling of the spatial risk caused by a hazardous event leading to choosing the optimal evacuation route for a set of options. The second is to generate a 3D visual representation of the model output. A multicriteria decision making (MCDM) approach is used to model the risk aiming at finding the optimal evacuation route. This is achieved by using the analytical hierarchy process (AHP) on the criteria describing the different alternative evacuation routes. The best route is then chosen to be the alternative with the least cost. The 3D visual representation of the model displays the building, the surrounding environment, the evacuee’s location, the hazard location, the risk areas and the optimal evacuation pathway to the target safety location. The work has been performed using ESRI’s ArcGIS. Using the developed models, the user can input the location of the hazard and the location of the evacuee. The system then determines the optimum evacuation route and displays it in 3D.


Sign in / Sign up

Export Citation Format

Share Document