Emergency Evacuations in Disasters

1991 ◽  
Vol 6 (4) ◽  
pp. 463-466 ◽  
Author(s):  
Ralph B. Leonard

AbstractSome disasters produce circumstances that require the emergency removal of some or all of the citizens from a geographic area. Emergency or mass evacuation can be divided into immediate evacuation, in which the citizens are given no warning of their need to evacuate, and potential evacuation, in which citizens are given time (usually a day or two) to evacuate. The mass evacuation aspect of disaster planning frequently is neglected, but must be planned in detail. An essential ingredient of a plan is the designation of a person who has the authority to order an evacuation and that that person or an authorized alternate, is available instantly 24 hours a day. The plans should identify likely scenarios which could require emergency evacuation for a given community requiring, means of communicating with the citizens, evacuation routes, evacuation mechanisms, and shelter arrangements. All plans need to take into account human behavior during such a stressful situation.

2020 ◽  
Vol 2020 ◽  
pp. 1-12 ◽  
Author(s):  
Hui Xu ◽  
Cheng Tian ◽  
Yang Li

Rail transit stations with multifloor structures have been built in many cities to intensively utilize land resources and facilitate lives of community. However, being overcrowded with passengers results in high risks during daily operation. In response, this study conducted an emergency evacuation simulation and optimization in the three-dimensional (3D) space of “complex rail transit stations” (CRTSs). The aim of the paper is to provide a methodology to determine effective emergency evacuation strategies for CRTSs. The Lianglukou Rail Transit Station in Chongqing, China, was used as a case study and the AnyLogic simulation platform employed for simulating emergency evacuations. An emergency evacuation theoretical framework was established. The emergency evacuation strategies, including evacuation routes and evacuation times, were determined based on the theoretical demonstration. Simulation and optimization of emergency evacuation in the Lianglukou station were conducted. Accordingly, four main simulation results were obtained: (1) Escalators/stairs and turnstiles are key facilities in the evacuation; (2) Effective guidance for the evacuation is necessary in the public space of the station; (3) Passenger aggregation nodes should be guided for balanced evacuation; (4) Removing metal barriers is a useful evacuation optimization measure. The proposed research method and framework can be used by other CRTSs in the establishment of emergency evacuation strategies and effective optimization strategies to promote safety of transportation system. The research findings are beneficial to passengers in helping them provide valuable emergency evacuation guidance.


Author(s):  
Christopher S. Baidal ◽  
Nestor X. Arreaga ◽  
Vladimir Sanchez Padilla

The loss of several lives happens in events of natural disasters, due to the strength of nature or the static evacuation routes that usually directs towards a unique exit pathway. This paper proposes the integration of technology tools such as servers and open-source sensors into a reactive signage network to provide an updated and dynamical emergency evacuation system focusing specifically on fire situations. This pilot project works using microcontrollers that capture and manages into a server the surrounding information, setting evacuation routes and behaving according to the Dijkstra algorithm allowing the identification of obstacles or possible incidents that occur spontaneously during an evacuation. This process sends updates to the server either the evacuation route keeps the same or if a modification is required based on the information provided by the sensors about different areas, warning the shortest path for evacuation using computer vision support.


Author(s):  
Kenneth Joh ◽  
Alexandria Norman ◽  
Sherry I. Bame

AbstractHurricanes Katrina and Rita struck the US Gulf Coast in 2005, leading to the largest mass evacuation in US history and straining the region’s transportation infrastructure and services. This case study addresses the topic of disaster response to transportation unmet needs through an unprecedented spatial and longitudinal analysis of transportation-related disaster 2-1-1 call data collected in real-time, allowing for the investigation of unmet transportation needs by location and disaster phases. The authors analyze 25,205 transportation-related calls logged in Texas’ 25 regional 2-1-1 Area Information Centers from August 1 to December 31, 2005, including a baseline period before Hurricane Katrina, evacuation and landfall, and 3-months recovery post-Hurricane Rita. The spatial results show that transportation unmet needs were concentrated in Texas’ major metropolitan areas, especially in Houston-Galveston, and along highway evacuation routes. However, after controlling for population size, areas close to the landfall site and evacuation destinations had greater unmet transportation needs. Longitudinally, transportation unmet needs surged during evacuation and immediate disaster response then returned to baseline levels during recovery. Based on the results of the case study analyzing Texas 2-1-1 call data of unmet transportation needs, strategies and policies for improving mass evacuation and transportation support services are proposed and discussed.


Author(s):  
H. Faroqi ◽  
M.-S. Mesgari

During emergencies, emotions greatly affect human behaviour. For more realistic multi-agent systems in simulations of emergency evacuations, it is important to incorporate emotions and their effects on the agents. In few words, emotional contagion is a process in which a person or group influences the emotions or behavior of another person or group through the conscious or unconscious induction of emotion states and behavioral attitudes. In this study, we simulate an emergency situation in an open square area with three exits considering Adults and Children agents with different behavior. Also, Security agents are considered in order to guide Adults and Children for finding the exits and be calm. Six levels of emotion levels are considered for each agent in different scenarios and situations. The agent-based simulated model initialize with the random scattering of agent populations and then when an alarm occurs, each agent react to the situation based on its and neighbors current circumstances. The main goal of each agent is firstly to find the exit, and then help other agents to find their ways. Numbers of exited agents along with their emotion levels and damaged agents are compared in different scenarios with different initialization in order to evaluate the achieved results of the simulated model. NetLogo 5.2 is used as the multi-agent simulation framework with R language as the developing language.


2020 ◽  
Vol 2020 ◽  
pp. 1-8
Author(s):  
Ze Wang ◽  
Haiqiang Yang ◽  
Linglin Ni

Following the research on human decision-making under risk and uncertainty, the purpose of this paper is to analyze evacuees’ risky route decision behavior and its effect on traffic equilibrium. It examines the possibility of applying regret theory to model travellers’ regret-taking behavior and network equilibrium in emergency context. By means of modifying the utility function in expected utility theory, a regret-based evacuation traffic equilibrium model is established, accounting for the evacuee’s psychological behavior of regret aversion and risk aversion. Facing two parallel evacuation routes choice situation, the effect of evacuees’ risk aversion and regret aversion on traffic equilibrium is numerically investigated as well as the road capacity reduction from natural disaster. The findings reveal that evacuees prefer the riskless route with the lower travel time as the increase of the regret aversion degree. The equilibrium tends to be achieved when more evacuees choose the safer route jointly affected by risk aversion and regret aversion. Moreover, an optimization model for disaster occurring possibility is formulated to assess the traffic system performance for evacuation management. These findings are helpful for understanding how the regret aversion and risk aversion influence traffic equilibrium.


2019 ◽  
Vol 2019 ◽  
pp. 1-14
Author(s):  
Yang Zhou ◽  
Tanghong Wu ◽  
Gaofan Zhang ◽  
Zichuan Fan

Emergency evacuation is an important issue in public security. To make a considerate plan, various situations are presented including blocking the accident area and letting the emergency access path available. In order to offer dynamic evacuation routes due to different circumstances, a multistory building evacuation model is proposed. Firstly, to analyse the patency of the building, an evacuation formula is applied after binary processing. The function of evacuation time and some other parameters is given by means of regression analysis. Secondly, the cellular automata (CA) algorithm was applied to illustrate the effect of the bottleneck. The response of evacuation time could be approximately optimized through calculating time step of the CA simulation. Finally, the value of maximum evacuation population density could be determined according to the analysis of CA simulation results, which was related to the switch state of the emergency channel. The emergency evacuation model was simulated by using the Louvre museum as an example. The results of the simulation presented some feasible evacuation routes in all kinds of situations. Furthermore, the functional relationship would also be given among evacuation time with the diversity of tourists, pedestrian density, and width of exits. It can give a different perspective that the multistory building evacuation model shows excellent adaptability to different circumstances.


Author(s):  
Jennifer Smith ◽  
Brian Veitch

Offshore petroleum platforms present complex, time-sensitive situations that can make emergency evacuations difficult to manage. Virtual environments (VE) can train safety-critical tasks and help prepare personnel to respond to real-world offshore emergencies. Before industries can adopt VE training, its utility must be established to ensure the technology provides effective training. This paper presents the results of two experiments that investigated the training utility of VE training. The experiments focused particularly on determining the most appropriate method to deliver offshore emergency egress training using a virtual environment. The first experiment used lecture-based teaching (LBT). The second experiment investigated the utility of a simulation-based mastery learning (SBML) pedagogical method from the medical field to address offshore emergency egress training. Both training programs (LBT and SBML) were used to train naïve participants in basic onboard familiarization and emergency evacuation procedures. This paper discusses the training efficacy of the SBML method in this context and compares the results of the SBML experimental study to the results of the LBT training experiment. Efficacy of the training methods is measured by a combination of time spent training and performance achieved by each of the training groups. Results show that the SBML approach to VE training was more time effective and produced better performance in the emergency scenarios. SBML training can help address individual variability in competence. Limitations to the SBML training are discussed and recommendations to improve the delivery of SBML training are presented. Overall, the results indicate that employing SBML training in industry can improve human reliability during emergencies through increased competence and compliance.


2011 ◽  
Vol 6 (6) ◽  
pp. 568-580
Author(s):  
Edgar C. L. Pang ◽  
◽  
Wan-Ki Chow

Emergency evacuation for supertall buildings with heights over 200 m require a very long time for occupants to travel down the buildings. Occupants might jam into protected lobbies and staircases, extending the waiting time. There is not yet any code requirement specifically for emergency evacuation in supertall buildings, which are criticized for using the same codes for buildings with normal heights. Further, the evacuation design for several existing supertall buildings does not even follow prescriptive fire-safety codes. The underlying problems have not yet been addressed by thorough studies. Evacuation in such tall buildings in Hong Kong will be studied in this paper. The assumptions made in the local prescriptive codes for safe egress will be justified. Three buildings with evacuation design complying with the local codes are considered as examples. A commercial building, a hotel, and a residential block in Hong Kong are taken as examples. The key design parameters in the local codes are for 40 people evacuating with a flow rate of 1.1 person/s through the staircase between typical floors. The evacuation time from each floor to the protected lobby is assumed to be within 5 min. The evacuation times in different scenarios with these assumptions are calculated. Such assumptions do not hold under a high occupant load. The total evacuation time would be extended significantly when the travelling flows of occupants are blocked in any of the evacuation routes. Different fire-safety management schemes with staged evacuation, such as assigning higher priorities to evacuate lower or upper floors first, are evaluated. The results observed for safe egress are then discussed.


2018 ◽  
Vol 10 (12) ◽  
pp. 4862 ◽  
Author(s):  
Menghui Li ◽  
Jinliang Xu ◽  
Xingliang Liu ◽  
Chao Sun ◽  
Zhihao Duan

Under no-notice evacuation scenarios with limited time horizons, the effectiveness of evacuation can be negatively impacted by intermediate trips that are made by family members and the identification of vulnerable populations. The emergence of shared-mobility companies, such as Uber and DiDi, can be considered as a potential means to address above-mentioned concerns. The proposed study explores the utility of shared-mobility services under emergency-evacuation scenarios and makes recommendations to relevant bodies that are based on the obtained and they are discussed herein. The study investigates attitudes of the public, experts, and drivers towards the use of shared-mobility resources during emergency evacuations based on a stated preference survey. Results of questionnaires, driver interviews, and face-to-face expert interviews have been analyzed to validate the feasibility and identify potential problems of leveraging shared-mobility services during evacuation response, especially in metropolitan areas wherein such services are already ubiquitous. Numerical simulations have been performed to quantify potential improvements in the total trip distance and number of evacuees after incorporating the use of shared mobility into emergency-response operations. However, despite the observed improvement in emergency efficiency, certain realistic roadblocks must be overcome. Realization of the proposed objective heavily depends on actionable policy recommendations, provided herein as a reference for the government, emergency management agencies, and shared-mobility companies.


Sign in / Sign up

Export Citation Format

Share Document