scholarly journals X-ware: a proof of concept malware utilizing artificial intelligence

Author(s):  
Thanh Cong Truong ◽  
Jan Plucar ◽  
Bao Quoc Diep ◽  
Ivan Zelinka

<p>Recent years have witnessed a dramatic growth in utilizing computational intelligence techniques for various domains. Coherently, malicious actors are expected to utilize these techniques against current security solutions. Despite the importance of these new potential threats, there remains a paucity of evidence on leveraging these research literature techniques. This article investigates the possibility of combining artificial neural networks and swarm intelligence to generate a new type of malware. We successfully created a proof of concept malware named X-ware, which we tested against the Windows-based systems. Developing this proof of concept may allow us to identify this potential threat’s characteristics for developing mitigation methods in the future. Furthermore, a method for recording the virus’s behavior and propagation throughout a file system is presented. The proposed virus prototype acts as a swarm system with a neural network-integrated for operations. The virus’s behavioral data is recorded and shown under a complex network format to describe the behavior and communication of the swarm. This paper has demonstrated that malware strengthened with computational intelligence is a credible threat. We envisage that our study can be utilized to assist current and future security researchers to help in implementing more effective countermeasures</p>

This chapter presents an introductory overview of the application of computational intelligence in biometrics. Starting with the historical background on artificial intelligence, the chapter proceeds to the evolutionary computing and neural networks. Evolutionary computing is an ability of a computer system to learn and evolve over time in a manner similar to humans. The chapter discusses swarm intelligence, which is an example of evolutionary computing, as well as chaotic neural network, which is another aspect of intelligent computing. At the end, special concentration is given to a particular application of computational intelligence—biometric security.


Author(s):  
Daniel Overhoff ◽  
Peter Kohlmann ◽  
Alex Frydrychowicz ◽  
Sergios Gatidis ◽  
Christian Loewe ◽  
...  

Purpose The DRG-ÖRG IRP (Deutsche Röntgengesellschaft-Österreichische Röntgengesellschaft international radiomics platform) represents a web-/cloud-based radiomics platform based on a public-private partnership. It offers the possibility of data sharing, annotation, validation and certification in the field of artificial intelligence, radiomics analysis, and integrated diagnostics. In a first proof-of-concept study, automated myocardial segmentation and automated myocardial late gadolinum enhancement (LGE) detection using radiomic image features will be evaluated for myocarditis data sets. Materials and Methods The DRG-ÖRP IRP can be used to create quality-assured, structured image data in combination with clinical data and subsequent integrated data analysis and is characterized by the following performance criteria: Possibility of using multicentric networked data, automatically calculated quality parameters, processing of annotation tasks, contour recognition using conventional and artificial intelligence methods and the possibility of targeted integration of algorithms. In a first study, a neural network pre-trained using cardiac CINE data sets was evaluated for segmentation of PSIR data sets. In a second step, radiomic features were applied for segmental detection of LGE of the same data sets, which were provided multicenter via the IRP. Results First results show the advantages (data transparency, reliability, broad involvement of all members, continuous evolution as well as validation and certification) of this platform-based approach. In the proof-of-concept study, the neural network demonstrated a Dice coefficient of 0.813 compared to the expert's segmentation of the myocardium. In the segment-based myocardial LGE detection, the AUC was 0.73 and 0.79 after exclusion of segments with uncertain annotation.The evaluation and provision of the data takes place at the IRP, taking into account the FAT (fairness, accountability, transparency) and FAIR (findable, accessible, interoperable, reusable) criteria. Conclusion It could be shown that the DRG-ÖRP IRP can be used as a crystallization point for the generation of further individual and joint projects. The execution of quantitative analyses with artificial intelligence methods is greatly facilitated by the platform approach of the DRG-ÖRP IRP, since pre-trained neural networks can be integrated and scientific groups can be networked.In a first proof-of-concept study on automated segmentation of the myocardium and automated myocardial LGE detection, these advantages were successfully applied.Our study shows that with the DRG-ÖRP IRP, strategic goals can be implemented in an interdisciplinary way, that concrete proof-of-concept examples can be demonstrated, and that a large number of individual and joint projects can be realized in a participatory way involving all groups. Key Points:  Citation Format


2010 ◽  
Vol 61 (2) ◽  
pp. 120-124 ◽  
Author(s):  
Ladislav Zjavka

Generalization of Patterns by Identification with Polynomial Neural Network Artificial neural networks (ANN) in general classify patterns according to their relationship, they are responding to related patterns with a similar output. Polynomial neural networks (PNN) are capable of organizing themselves in response to some features (relations) of the data. Polynomial neural network for dependence of variables identification (D-PNN) describes a functional dependence of input variables (not entire patterns). It approximates a hyper-surface of this function with multi-parametric particular polynomials forming its functional output as a generalization of input patterns. This new type of neural network is based on GMDH polynomial neural network and was designed by author. D-PNN operates in a way closer to the brain learning as the ANN does. The ANN is in principle a simplified form of the PNN, where the combinations of input variables are missing.


The objective of this undertaking is to apply neural systems to phishing email recognition and assess the adequacy of this methodology. We structure the list of capabilities, process the phishing dataset, and execute the Neural Network frameworks. we analyze its exhibition against that of other real Artificial Intelligence Techniques – DT , K-nearest , NB and SVM machine.. The equivalent dataset and list of capabilities are utilized in the correlation. From the factual examination, we infer that Neural Networks with a proper number of concealed units can accomplish acceptable precision notwithstanding when the preparation models are rare. Additionally, our element determination is compelling in catching the qualities of phishing messages, as most AI calculations can yield sensible outcomes with it.


Author(s):  
Silviani E Rumagit ◽  
Azhari SN

AbstrakLatar Belakang penelitian ini dibuat dimana semakin meningkatnya kebutuhan listrik di setiap kelompok tarif. Yang dimaksud dengan kelompok tarif dalam penelitian ini adalah kelompok tarif sosial, kelompok tarif rumah tangga, kelompok tarif bisnis, kelompok tarif industri dan kelompok tarif pemerintah. Prediksi merupakan kebutuhan penting bagi penyedia tenaga listrik dalam mengambil keputusan berkaitan dengan ketersediaan energi listik. Dalam melakukan prediksi dapat dilakukan dengan metode statistik maupun kecerdasan buatan.            ARIMA merupakan salah satu metode statistik yang banyak digunakan untuk prediksi dimana ARIMA mengikuti model autoregressive (AR) moving average (MA). Syarat dari ARIMA adalah data harus stasioner, data yang tidak stasioner harus distasionerkan dengan differencing. Selain metode statistik, prediksi juga dapat dilakukan dengan teknik kecerdasan buatan, dimana dalam penelitian ini jaringan syaraf tiruan backpropagation dipilih untuk melakukan prediksi. Dari hasil pengujian yang dilakukan selisih MSE ARIMA, JST dan penggabungan ARIMA, jaringan syaraf tiruan tidak berbeda secara signifikan. Kata Kunci— ARIMA, jaringan syaraf tiruan, kelompok tarif.  AbstractBackground this research was made where the increasing demand for electricity in each group. The meaning this group is social, the household, business, industry groups and the government fare. Prediction is an important requirement for electricity providers in making decisions related to the availability of electric energy. In doing predictions can be made by statistical methods and artificial intelligence.            ARIMA is a statistical method that is widely used to predict where the ARIMA modeled autoregressive (AR) moving average (MA). Terms of ARIMA is the data must be stationary, the data is not stationary should be stationary  use differencing. In addition to the statistical method, predictions can also be done by artificial intelligence techniques, which in this study selected Backpropagation neural network to predict. From the results of tests made the difference in MSE ARIMA, ANN and merging ARIMA, artificial neural networks are not significantly different. Keyword—ARIMA, neural network, tarif groups


10.14311/1121 ◽  
2009 ◽  
Vol 49 (2) ◽  
Author(s):  
M. Chvalina

This article analyses the existing possibilities for using Standard Statistical Methods and Artificial Intelligence Methods for a short-term forecast and simulation of demand in the field of telecommunications. The most widespread methods are based on Time Series Analysis. Nowadays, approaches based on Artificial Intelligence Methods, including Neural Networks, are booming. Separate approaches will be used in the study of Demand Modelling in Telecommunications, and the results of these models will be compared with actual guaranteed values. Then we will examine the quality of Neural Network models. 


Author(s):  
Jay Rodge ◽  
Swati Jaiswal

Deep learning and Artificial intelligence (AI) have been trending these days due to the capability and state-of-the-art results that they provide. They have replaced some highly skilled professionals with neural network-powered AI, also known as deep learning algorithms. Deep learning majorly works on neural networks. This chapter discusses about the working of a neuron, which is a unit component of neural network. There are numerous techniques that can be incorporated while designing a neural network, such as activation functions, training, etc. to improve its features, which will be explained in detail. It has some challenges such as overfitting, which are difficult to neglect but can be overcome using proper techniques and steps that have been discussed. The chapter will help the academician, researchers, and practitioners to further investigate the associated area of deep learning and its applications in the autonomous vehicle industry.


Water ◽  
2019 ◽  
Vol 12 (1) ◽  
pp. 15
Author(s):  
Rajshree Patil ◽  
Saurabh Levin ◽  
Samuel Rajkumar ◽  
Tahmina Ajmal

In this article, we present our initial findings to support the design of an advanced field test to detect bacterial contamination in water samples. The system combines the use of image processing and neural networks to detect an early presence of bacterial activity. We present here a proof of concept with some tests results. Our initial findings are very promising and indicate detection of viable bacterial cells within a period of 2 h. To the authors’ knowledge this is the first attempt to quantify viable bacterial cells in a water sample using cell splitting. We also present a detailed design of the complete system that uses the time lapse images from a microscope to complete the design of a neural network based smart system.


2018 ◽  
Vol 226 ◽  
pp. 04016
Author(s):  
Yuri G. Kabaldin ◽  
Dmitrii A. Shatagin ◽  
Pavel V. Kolchin

The method for optimizing control programs for CNC machines based on artificial intelligence approaches, in particular, the apparatus of artificial neural networks, is outlined. A neural network model of the dynamic stability of the cutting process is proposed, which makes it possible to simulate the dynamics of the cutting process using the CAM system.


2019 ◽  
Vol 134 (1) ◽  
pp. 52-55 ◽  
Author(s):  
J Huang ◽  
A-R Habib ◽  
D Mendis ◽  
J Chong ◽  
M Smith ◽  
...  

AbstractObjectiveDeep learning using convolutional neural networks represents a form of artificial intelligence where computers recognise patterns and make predictions based upon provided datasets. This study aimed to determine if a convolutional neural network could be trained to differentiate the location of the anterior ethmoidal artery as either adhered to the skull base or within a bone ‘mesentery’ on sinus computed tomography scans.MethodsCoronal sinus computed tomography scans were reviewed by two otolaryngology residents for anterior ethmoidal artery location and used as data for the Google Inception-V3 convolutional neural network base. The classification layer of Inception-V3 was retrained in Python (programming language software) using a transfer learning method to interpret the computed tomography images.ResultsA total of 675 images from 388 patients were used to train the convolutional neural network. A further 197 unique images were used to test the algorithm; this yielded a total accuracy of 82.7 per cent (95 per cent confidence interval = 77.7–87.8), kappa statistic of 0.62 and area under the curve of 0.86.ConclusionConvolutional neural networks demonstrate promise in identifying clinically important structures in functional endoscopic sinus surgery, such as anterior ethmoidal artery location on pre-operative sinus computed tomography.


Sign in / Sign up

Export Citation Format

Share Document