scholarly journals Switched Capacitor Based Cascaded Half-Bridge Multilevel Inverter With Voltage Boosting Feature

2021 ◽  
Vol 6 (1) ◽  
pp. 63-73
Author(s):  
Hossein Khoun-Jahan ◽  

Cascaded multilevel inverter (CMI) topology is prevalent in many applications. However, the CMI requires many switches and isolated dc sources, which is the main drawback of this type of inverter. As a result, the volume, cost and complexity of the CMI topology are increased and the efficiency is deteriorated. This paper thus proposes a switched-capacitor-based multilevel inverter topology with half-bridge cells and only one dc source. Compared to the conventional CMI, the proposed inverter uses almost half the number of switches, while maintaining a boosting capability. Additionally, the main drawback of switched-capacitor multilevel inverters is the capacitor inrush current. This problem is also averted in the proposed topology by using a charging inductor or quasi-resonant capacitor charging with a front-end boost converter. Simulation results and lab-scale experimental verifications are provided to validate the feasibility and viability of the proposed inverter topology.

Author(s):  
Tamiru Debela ◽  
Jiwanjot Singh

Abstract Multilevel inverters (MLIs) have formed a new wave of interest in research and industry. Switched capacitor-based multilevel inverters are used to avoid the need for multiple separated DC sources compared to cascaded MLIs. However, the inclusion of several capacitors creates problems such as high inrush current, voltage imbalance. To avoid these drawbacks, this paper proposes an isolation-based scheme by using a flyback converter in the switched capacitor multilevel inverter. Further, the overall topology provides step-up AC voltage across the load from a single DC source with fewer power switches. To generate a step-up five-level voltage across the load, switched capacitor-based multilevel inverter needs six power switches and only one capacitor. To get the appropriate switching operation to generate the NL-levels, phase disposition pulse width modulation (PD-PWM) has been developed. The extended nine-level S 2 -MLI is also discussed in this paper under different conditions as change in input source voltage and dynamic load change. Moreover, to prove the superior performance of switched-capacitor single DC source multilevel inverter (S2-MLI), comparative analysis with existing single DC source MLI has been performed. The effectiveness and feasibility of the proposed topology are tested with varieties of loads by simulation using Matlab/Simulink. To validate the simulation results, hardware implementation has been done of five-level S2-MLI considering resistive and motor load by using DSpace 1103 controller.


2013 ◽  
Vol 313-314 ◽  
pp. 876-881
Author(s):  
M.R. Rashmi ◽  
B. Anu

Nonconventional energy sources are playing important role in meeting current power/energy demands. However these sources cannot provide High voltage/power. For power conditioning and voltage amplification solid state power converters are very much essential. One such approach to obtain high voltage was to use cascaded multilevel inverter but cascaded multilevel inverters require separate DC sources and they cannot be used for regenerative applications. To overcome these limitations, a novel configuration is using diode clamped multilevel inverter is proposed here. . The conditioned DC voltage from photovoltaic cells or fuel cells or batteries is boosted and inverted by means of multistage Multilevel Inverters (MLI). Three different configurations are presented in this paper. From the simulation results of all three configurations, the topology which is found to be better is implemented in the real time. A proto type is developed to boost 40 V input DC to 100 V AC and the experimental results for the same are presented.


Energies ◽  
2021 ◽  
Vol 14 (7) ◽  
pp. 1915
Author(s):  
Hossein Khoun Jahan ◽  
Reyhaneh Eskandari ◽  
Tohid Rahimi ◽  
Rasoul Shalchi Alishah ◽  
Lei Ding ◽  
...  

In this paper, a switched-capacitor multilevel inverter with voltage boosting and common-mode-voltage reduction capabilities is put forth. The proposed inverter is synthesized with one-half bridge and several switched-capacitor cells. Due to the voltage boosting and common-mode current reduction features, the proposed multilevel inverter is suitable for grid-connected PV applications. In addition, an analytical lifetime evaluation based on mission profile of the proposed inverter has been presented to derive lifetime distribution of semiconductors. Whereas in the proposed inverter, any components failure can bring the whole system to a shutdown. The series reliability model is used to estimate the lifetime of the overall system. The performance of the suggested multilevel inverter in grid-connected applications is verified through the simulation results using the grid-tied model in Matlab/Simulink. Moreover, the viability and feasibility of the presented inverter are proven by using a one kW lab-scaled prototype.


2014 ◽  
Vol 63 (2) ◽  
pp. 187-196
Author(s):  
R. Kavitha ◽  
Rani Thottungal

Abstract Harmonic minimisation in hybrid cascaded multilevel inverter involves complex nonlinear transcendental equation with multiple solutions. Hybrid cascaded multilevel can be implemented using reduced switch count when compared to traditional cascaded multilevel inverter topology. In this paper Biogeographical Based Optimisation (BBO) technique is applied to Hybrid multilevel inverter to determine the optimum switching angles with weighted total harmonic distortion (WTHD) as the objective function. Optimisation based on WTHD combines the advantage of both OMTHD (Optimal Minimisation of Total Harmonic Distortion) and SHE (Selective Harmonic Elimination) PWM. WTHD optimisation has the benefit of eliminating the specific lower order harmonics as in SHEPWM and minimisation of THD as in OMTHD. The simulation and experimental results for a 7 level multilevel inverter were presented. The results indicate that WTHD optimization provides both elimination of lower order harmonics and minimisation of Total Harmonic Distortion when compared to conventional OMTHD and SHE PWM. Experimental prototype of a seven level hybrid cascaded multilevel inverter is implemented to verify the simulation results.


Author(s):  
Ali Seifi ◽  
Majid Hosseinpour ◽  
Abdolmajid Dejamkhooy

Multilevel inverters are a new generation of DC–AC converters at medium and high voltage and power levels. In this paper, a new single-phase cascaded multilevel inverter is presented. For this purpose, a new basic cell is presented at first. Then, the new multilevel inverter structure is yielded by series connection of these cells. The proposed new cell is only capable of generating positive voltage levels, and therefore, to produce zero and negative voltage levels, the proposed structure is constructed based on H-bridge module. In order to reduce the maximum blocking voltage especially on H-bridge switches, the cascaded connection of the proposed converter is investigated. A comprehensive comparison is carried out between the proposed multilevel inverter with the classical and recently introduced structures in terms of the number of switching devices, the number of drivers, the total blocking voltage of the switches as well as the loss and efficiency. The accuracy of the proposed inverter’s performance is simulated in MATLAB/Simulink in symmetric and asymmetric topologies for a 17-level and 23-level output voltage respectively, and then evaluated by the laboratory prototype.


Electronics ◽  
2021 ◽  
Vol 11 (1) ◽  
pp. 67
Author(s):  
Mohammad Fahad ◽  
Mohd Tariq ◽  
Mohammad Faizan ◽  
Atib Ali ◽  
Adil Sarwar ◽  
...  

Implementing voltage boost multilevel inverter topologies for PV and fuel cell energy sources is highly advantageous. Switched-capacitor multilevel inverters (SCMLI) have a step-up feature with low device requirements and can remove the need for high gain dc-dc converters leading to reduced overall system bulk. This work proposes a dual input SCMLI to achieve an output of nineteen levels while using a low number of components and high boosting factor and self-balancing of capacitor voltages. A comprehensive analysis of the proposed structure is presented, focusing on component requirements, cost and dynamic performance. The efficiency and loss distribution during operation is also provided. The operation and real-time performance of the SCMLI have been verified by simulation. Experimental results further validate the simulation results.


2013 ◽  
Vol 344 ◽  
pp. 159-163
Author(s):  
Zhen Jun Lin ◽  
Sheng Hua Huang

Cascaded multilevel inverters could realize high-voltage output based on a series connection of power cells which use standard low-voltage component configurations. This characteristic could achieve high-quality output voltage waveforms and input current waveforms. These merits are made for motor control, especially in the field of speed-sensorless vector control of induction motor based on the theory of MRAS. This paper constructs a simulation system with the help of MATLB/SIMULINK and a system combined cascaded H-bridge multilevel inverter with induction motor with the help of DSP and FPGA. The simulation and experiment results verified the superiority of cascaded multilevel inverter applied on the MRAS speed-sensorless vector control of induction motor.


Sign in / Sign up

Export Citation Format

Share Document