scholarly journals QoS Framework for a Multi-stack based Heterogeneous Wireless Sensor Network

Author(s):  
K. Panimozhi ◽  
G. Mahadevan

Wireless sensor nodes consist of a collection of sensor nodes with constrained resources in terms of processing power and battery energy. Wireless sensors networks are used increasingly in many industrial and consumer applications. Sensors detect events and send via multi hop routing to the sink node for processing the event. The routing path is established through proactive or reactive routing protocols. To improve the performance of the Wireless Sensor Networks, multi stack architecture is addressed. But the multi stack architecture has many problems with respect to life time, routing loop and QOS. In this work we propose a solution to address all these three problems of life time, routing loop and QOS in case of multi stack architecture.

2014 ◽  
Vol 26 (5) ◽  
pp. 616-621 ◽  
Author(s):  
Ningning Wu ◽  
◽  
Juwei Zhang ◽  
Qiangyi Li ◽  
Shiwei Li ◽  
...  

<div class=""abs_img""><img src=""[disp_template_path]/JRM/abst-image/00260005/10.jpg"" width=""200"" /> Nodes moving direction in our scheme</div> Wireless sensor network nodes deployment optimization problem is studied and wireless sensor nodes deployment determines its capability and lifetime. The nodes deployment scheme based on the perceived probability model aiming at wireless sensor network nodes which are randomly deployed is designed. The scheme can be used to calculate the perceived probability in the area around wireless sensor network nodes and move the wireless sensor nodes to the low perceived probability area according to the current energy of the wireless sensor node. The simulation results show that this deployment scheme achieves the goal of the nodes reasonable distribution by improving the network coverage and reducing the nodes movement distance and energy consumption. </span>


2016 ◽  
Vol 5 (1) ◽  
pp. 63-72 ◽  
Author(s):  
Derssie D. Mebratu ◽  
Charles Kim

Abstract. Increasing the lifespan of a group of distributed wireless sensors is one of the major challenges in research. This is especially important for distributed wireless sensor nodes used in harsh environments since it is not feasible to replace or recharge their batteries. Thus, the popular low-energy adaptive clustering hierarchy (LEACH) algorithm uses the “computation and communication energy model” to increase the lifespan of distributed wireless sensor nodes. As an improved method, we present here that a combination of three clustering algorithms performs better than the LEACH algorithm. The clustering algorithms included in the combination are the k-means+ + , k-means, and gap statistics algorithms. These three algorithms are used selectively in the following manner: the k-means+ +  algorithm initializes the center for the k-means algorithm, the k-means algorithm computes the optimal center of the clusters, and the gap statistics algorithm selects the optimal number of clusters in a distributed wireless sensor network. Our simulation shows that the approach of using a combination of clustering algorithms increases the lifespan of the wireless sensor nodes by 15 % compared with the LEACH algorithm. This paper reports the details of the clustering algorithms selected for use in the combination approach and, based on the simulation results, compares the performance of the combination approach with that of the LEACH algorithm.


2019 ◽  
Vol 2019 ◽  
pp. 1-13 ◽  
Author(s):  
Dilara Acarali ◽  
Muttukrishnan Rajarajan ◽  
Nikos Komninos ◽  
B. B. Zarpelão

The propagation approach of a botnet largely dictates its formation, establishing a foundation of bots for future exploitation. The chosen propagation method determines the attack surface and, consequently, the degree of network penetration, as well as the overall size and the eventual attack potency. It is therefore essential to understand propagation behaviours and influential factors in order to better secure vulnerable systems. Whilst botnet propagation is generally well studied, newer technologies like IoT have unique characteristics which are yet to be thoroughly explored. In this paper, we apply the principles of epidemic modelling to IoT networks consisting of wireless sensor nodes. We build IoT-SIS, a novel propagation model which considers the impact of IoT-specific characteristics like limited processing power, energy restrictions, and node density on the formation of a botnet. Focusing on worm-based propagation, this model is used to explore the dynamics of spread using numerical simulations and the Monte Carlo method to discuss the real-life implications of our findings.


Author(s):  
Mohammed Réda El Ouadi ◽  
Abderrahim Hasbi

<p>Wireless Sensor Networks is a group of sensor nodes dispatched in a geographical area for a defined objective. These sensor nodes are characterized by limited capacity of communicating, computing and especially of energy. The performance of these WSN is resting on a good routing protocol, hence the need to choose the routing protocol able to satisfy the wsn's objectives, and to satisfy the common challenge to prolong network life time.</p><p>Several routing concepts have been proposed for the WSN, hierarchical routing is one of the most used concepts. It is divided into 3 types: cluster based routing, grid based routing and chain based protocol. In this paper, we are interested to Study, analyse and compare two popular routing protocols for Wireless sensor networks (WSNs), Low-Energy Adaptive Clustering Hierarchy (LEACH) using clusters based concept and Power-Efficient Gathering in Sensor Information System (PEGASIS) with chain based concept. The both protocols are simulated with Matlab simulator, in order to evaluate its performances against the different users and the WSNs objectives defined.</p>


In the recent field of research the wireless sensor network plays an important role. Wireless sensor network is an important technology in this era. A Wireless Sensor Network (WSN) is a distributed network contains enormous sensor nodes with wide range of application. It transmits unlimited and enormous data like image, video, audio and data through end to end network. WSNs offer much solution to remote real time monitoring, recognition of physical occurrence and target tracking applications. This network growth is increasingly rapidly day by day and made the research field in difficult resurgence. The extended network lifetime, effective load balancing and scalability are essential for WSNs. The life time of the wireless network can be extended by the concept of clustering .Clustering is process of grouping the smaller localized networks in highly structured way. Diverse cluster technology available based on the network the clustering concept will be used. Efficient routing algorithm provide the way for efficient usage of bandwidth and reduce the delay in the network . This paper provides the survey of clustering and routing protocols to improve the efficiency in wireless technology in recent years


Author(s):  
Oluwadara J. Odeyinka ◽  
Opeyemi A. Ajibola ◽  
Michael C. Ndinechi ◽  
Onyebuchi C. Nosiri ◽  
Nnaemeka Chiemezie Onuekwusi

This paper is a review on energy conservation in wireless sensor networks (WSNs). Due to the nature of wireless sensor nodes in terms of deployment and their common usage in terrains with limited access, recharging or replacing sensor nodes batteries may be difficult. This paper examined various sources of energy in WSNs Battery, energy harvesting and energy transference. Also, various energy usage operations and energy wastage activities in WSNs were examined, and comparisons of different routing protocols based on network structure, energy dissipation, data communication cost, and entire energy usage in WSNs were itemized. The prospects of the machine learning (ML) approach in addressing energy constraint issues in WSNs were reviewed. This paper recommends a compound approach in routing decisions to maximize energy usage operation and minimize energy wastage activities, consideration for energy harvesting and transference mechanisms, and exploring the potentials in ML algorithms to resolve energy problem in wireless sensor networks.


Author(s):  
Swades De ◽  
Shouri Chatterjee

Scarcity of energy in tiny battery-powered wireless sensor nodes have led to a tremendous amount of research thrust at all protocol levels in wireless networks. Despite efficient design of the underlying communication protocols, limited battery energy primarily restricts the usage of nodes and hence the lifetime of the network. As a result, although there has been a lot of promise of pervasive networking via sensors, limited energy of the nodes has been a major bottleneck to deployment feasibility and cost of such a network. With this view, alongside many innovative network communication protocol research to increase nodal as well as network lifetime, there have been significant ongoing efforts on how to impart energy to the depleted batteries on-line. In this chapter, we propose to apply the lessons learnt from our surrounding nature and practices of the living world to realize network energy operated field sensors. We show that, although the regular communicating nodes may not benefit from network energy harvesting, by modifying the carrier sensing principle in a hierarchical network setting, the low power consuming field nodes can extend their lifetimes, or even the scavenged RF energy can be sufficient for the uninterrupted processing and transmission activities of the field nodes.


2015 ◽  
Vol 1 (1) ◽  
pp. 349-352
Author(s):  
Christian Bollmeyer ◽  
Mathias Pelka ◽  
Hartmut Gehring ◽  
Horst Hellbrück

AbstractWireless medical sensors are an emerging technology. Wireless sensors form networks and are placed in an unknown environment. For indoor scenarios context detection of medical sensors, e.g. removal of sensors from a specific room, is important. Current algorithms for context detection of wireless sensors are based on RF signals, but RF signal propagation and room location show only a weak correlation. Recent approaches with RSSI-measurements are based on prior fingerprinting and therefore costly. In our approach, we equip wireless sensor nodes with a barometric sensor to measure pressure disturbances that occur, when doors of rooms are opened or closed. By signal processing of these disturbances our proposed algorithm detects rooms and estimates distances without prior knowledge in an unknown environment. Based on these measurement we automatically build a topology graph representing the room context and distances for indoor environment in a model for buildings. We evaluate our algorithm within a wireless sensor network and show the performance of our solution.


Sign in / Sign up

Export Citation Format

Share Document