scholarly journals An Internal Current Controlled BLDC Motor Drive Supplied with PV Fed High Voltage Gain DC-DC Converter

Author(s):  
G. G. Raja Sekhar ◽  
Basavaraja Banakara

The paper presents an efficient speed control of brushless DC (BLDC) motor drive for photo-voltaic (PV) system fed system. A high-gain DC-DC converter is employed in the system to boost the PV system low output voltage to a level required for the drive system. High-gain DC-DC converter is operated in closed-loop mode to attain accurate and steady output. The converter (VSI) for BLDC is switched at fundamental frequency and thus reducing high frequency switching losses. Internal current control method is developed and employed for the speed control of PV fed BLDC motor. The appropriateness of the internal current controller for the speed control of PV fed BLDC motor is verified for increamental speed with fixed torque and decreamental speed with fixed torque operating conditions. The system is developed and results are developed using MATLAB/SIMULINK software

Author(s):  
G. G RajaSekhar ◽  
Basavaraja Banakar

<p>Brushless DC motors (BLDC) are predominantly used these days due to its meritorious advantages over conventional motors. The paper presents PV fed BLDC speeds control system. A closed-loop interleaved boost converter increases the voltage from PV system to required level. Converter for BLDC operates at fundamental switching frequency which reduces losses due to high switching frequency. Internal current control method is developed and employed for the speed control of PV fed BLDC motor by sensing the actual speed feedback. Internal current controlled PV fed BLDC drive is analyzed with increamental speed with fixed torque and decreamental speed with fixed torque operating conditions. Also the system with speed control is verified for variable torque condition. The system is developed and results are developed using MATLAB/SIMULINK software.</p><p><em> </em></p>


Author(s):  
G. G RajaSekhar ◽  
Basavaraja Banakara

This paper presents the performance of Brushless DC (BLDC) Motor drive with only one positioning sensor instead of three conventional sensors. The three sensor units are replaced with a single stator current sensor unit in DC bus which further reduces the cost increasing the reliability of the drive system. Using a single sensor in stator requires minimum electronic equipment for the purpose of measurement process. This paper evolves the BLDC motor drive fed from PV system. A high voltage-gain DC-DC converter is presented in this paper to step-up the voltage from PV system. The appropriateness of PV fed BLDC motor drive is verified for variable increamental speed with fixed torque and variable decremental speed with fixed torque operating conditions. BLDC motor drive performance is also performed for variable torque with fixed peed working condition. The proposed system and results are developed using MATLAB/SIMULINK software.


2018 ◽  
Vol 7 (2.21) ◽  
pp. 190
Author(s):  
K Sasikala ◽  
R Krishna Kumar

This paper mainly impacts on a bridgeless buck boost converter fed Brush Less Direct Current (BLDC) motor drive with Power Factor Correction (PFC) which is low cost and well suitable for low power applications. The speed of the BLDC motor is controlled by adjusting the Voltage Source Inverter’s dc link voltage which is then employed along with a distinct voltage sensor. Thus the fundamental frequency switching of VSI operation becomes quite ease with BLDC motor’s electronic turn off which provides minimal switching losses. An acceptable performance is attained for speed control having power quality indicators within the allowable limits. To end with the suggested drive’s prototype model has been implemented to evaluate and confirm the suggested BLDC motor drive’s performance for various speed controls with enhanced AC main’s power quality. 


Author(s):  
Xiaoyuan Wang ◽  
Tao Fu ◽  
Xiaoguang Wang

Brushless DC (BLDC) motors are widely used for many industrial applications because of their high efficiency, high torque and low volume. In view of the problem that the current control method of speed regulation system of BLDC motor has poor control effect caused by fixed parameters of PID controller, an adaptive PID algorithm with quadratic single neuron (QSN) was designed. Quadratic performance index was introduced in adjustment of weight coefficients; expected optimization effect was gotten by calculating control law. QSN adaptive PID controller can change its parameters online when operating conditions are changed, it can also change its control characteristic automatically. Matlab simulations and experiment results showed that the proposed approach has less overshoot, faster response, stronger ability of anti-disturbance, the results also showed more effectiveness and efficiency than the conventional PID model in motor speed control.


2012 ◽  
Vol 460 ◽  
pp. 308-312
Author(s):  
Qing Shou Song

In accordance with the advantage of conventional hysteresis current control method, this paper advances a novel control method for APF. In conventional hysteresis current control, the hysteresis band (HB) is fixed and actual compensating current is limited in a fixed HB. Firstly, the connection between HB and switching frequency must be found correctly. Then, the variable hysteresis band current controller is designed according to the connection. Finally, the Matlab simulation results show that the switching frequency of VSI is held nearly constant and the proposed controller can track reference current well[1]. The problems of increasing switching losses and audible noise which happened in high-frequency state can be resolved in conventional hysteresis current control.


2013 ◽  
Vol 14 (3) ◽  
pp. 285-296 ◽  
Author(s):  
Bhim Singh ◽  
Vashist Bist

Abstract This article presents a design of a power factor correction (PFC)-based brushless DC (BLDC) motor drive. The speed control of BLDC motor is achieved by controlling the DC link voltage of the voltage source inverter (VSI) feeding BLDC motor using a single voltage sensor. A front-end bridgeless single-ended primary inductance converter (SEPIC) is used for DC link voltage control and PFC operation. A bridgeless SEPIC is designed to operate in discontinuous inductor current mode (DICM) thus utilizing a simple control scheme of voltage follower. An electronic commutation of BLDC motor is used for VSI to operate in a low-frequency operation for reduced switching losses in the VSI. Moreover, a bridgeless topology offers less conduction losses due to absence of diode bridge rectifier for further increasing the efficiency. The proposed BLDC motor drive is designed to operate over a wide range of speed control with an improved power-quality at the AC mains under the recommended international power-quality standards such as IEC 61000–3-2.


2013 ◽  
Vol 732-733 ◽  
pp. 1115-1118
Author(s):  
Jun Wei Li ◽  
Zhen Dong Zhang ◽  
Yuan Yuan Ni

The switch reluctance motor (SRM) speed control system is often difficult to control due to its nonlinearities and parameter variations. In this paper, a fuzzy logic control (FLC) system has been presented to speed control of the SRM. The control system is composed of speed controller and current controller. The main task of the speed controller is to provide the appropriate control signal to the current controller based on the difference between the desired speed and the actual speed of the motor. In the speed control part, the fuzzy controller is used to reject the unknown and uncertain parameters in the SRM and in the load torque. The current controller evaluates the difference between the actual and the desired phase current and implements hysteresis current control. Simulation results demonstrate the effectiveness of the proposed control strategy under different operating conditions of the SRM.


2014 ◽  
Vol 15 (1) ◽  
pp. 25-33 ◽  
Author(s):  
Bhim Singh ◽  
Vashist Bist

Abstract This paper presents an IHQRR (integrated high-quality rectifier regulator) BIBRED (boost integrated buck rectifier energy storage DC-DC) converter-based VSI (voltage source inverter)-fed BLDC (brushless DC) motor drive. The speed control of BLDC motor is achieved by controlling the DC link voltage of the VSI using a single voltage sensor. This allows VSI to operate in fundamental frequency switching mode for electronic commutation of BLDC motor which reduces the switching losses due to high-frequency switching used in conventional approach of PWM (pulse width modulation)-based VSI-fed BLDC motor drive. A BIBRED converter is operated in a dual-DCM (discontinuous conduction mode) thus using a voltage follower approach for PFC (power factor correction) and DC link voltage control. The performance of the proposed drive is evaluated for improved power quality over a wide range of speed control and supply voltage variation for demonstrating the behavior of proposed drive. The power quality indices thus obtained are within the recommended limits by international PQ (power quality) standards such as IEC 61000-3-2.


Sign in / Sign up

Export Citation Format

Share Document