scholarly journals Performance of channel selection used for Multi-class EEG signal classification of motor imagery

Author(s):  
Djelloul Kheira ◽  
M. Beladgham

<p>In this paper, a study of a non-invasive brain-machine interfaces for the classification of 4 imaginary are presented. Performance comparisons using time-frequency analysis between the Linear Discriminant Analysis motor activities (left hand, right hand, foot, tongue) with the BCI competition III dataset IIIa is (LDA), the Support Vector Machine (SVM) and the K-Nearest Neighbors (KNN) algorithms have been carried. The number and position of electrodes for each subject were investigated to provide an improvement for the classification accuracy of the algorithm. Results show that the electrode positions varied from subject to subject; moreover , using one subset of the channels enhanced the classification performances compared to literature data. an average accuracy of 86.06% was observed among all 3 subjects.<strong></strong></p>

2017 ◽  
Vol 27 (08) ◽  
pp. 1750033 ◽  
Author(s):  
Alborz Rezazadeh Sereshkeh ◽  
Robert Trott ◽  
Aurélien Bricout ◽  
Tom Chau

Brain–computer interfaces (BCIs) for communication can be nonintuitive, often requiring the performance of hand motor imagery or some other conversation-irrelevant task. In this paper, electroencephalography (EEG) was used to develop two intuitive online BCIs based solely on covert speech. The goal of the first BCI was to differentiate between 10[Formula: see text]s of mental repetitions of the word “no” and an equivalent duration of unconstrained rest. The second BCI was designed to discern between 10[Formula: see text]s each of covert repetition of the words “yes” and “no”. Twelve participants used these two BCIs to answer yes or no questions. Each participant completed four sessions, comprising two offline training sessions and two online sessions, one for testing each of the BCIs. With a support vector machine and a combination of spectral and time-frequency features, an average accuracy of [Formula: see text] was reached across participants in the online classification of no versus rest, with 10 out of 12 participants surpassing the chance level (60.0% for [Formula: see text]). The online classification of yes versus no yielded an average accuracy of [Formula: see text], with eight participants exceeding the chance level. Task-specific changes in EEG beta and gamma power in language-related brain areas tended to provide discriminatory information. To our knowledge, this is the first report of online EEG classification of covert speech. Our findings support further study of covert speech as a BCI activation task, potentially leading to the development of more intuitive BCIs for communication.


2015 ◽  
Vol 1 (2) ◽  
pp. 295
Author(s):  
Mokhtar Mohammadi ◽  
Aso M. Darwesh

The electrical activities of brain fluctuate frequently and can be analyzed using electroencephalogram (EEG) signals. We present a new method for classification of ictal and seizure-free intracranial EEG recordings. The proposed method uses the application of multivariate empirical mode decomposition (MEMD) algorithm combines with the Hilbert transform as the Hilbert-Huang transform (HHT) and analyzing spectral energy of the intrinsic mode function of the signal. EMD uses the characteristics of signals to adaptively decompose them to several intrinsic mode functions (IMFs). Hilbert transforms (HTs) are then used to transform the IMFs into instantaneous frequencies (IFs), to obtain the signals time-frequency-energy distributions. Classification of the EEG signal that is epileptic seizure exists or not has been done using support vector machine. The algorithm was tested in 6 intracranial channels EEG records acquired in 9 patients with refractory epilepsy and validated by the Epilepsy Center of the University Hospital of Freiburg. The experimental results show that the proposed method efficiently detects the presence of epileptic seizure in EEG signals and also showed a reasonable accuracy in detection.


Information ◽  
2021 ◽  
Vol 12 (5) ◽  
pp. 187
Author(s):  
Shingchern D. You

In this paper, we study the use of EEG (Electroencephalography) to classify between concentrated and relaxed mental states. In the literature, most EEG recording systems are expensive, medical-graded devices. The expensive devices limit the availability in a consumer market. The EEG signals are obtained from a toy-grade EEG device with one channel of output data. The experiments are conducted in two runs, with 7 and 10 subjects, respectively. Each subject is asked to silently recite a five-digit number backwards given by the tester. The recorded EEG signals are converted to time-frequency representations by the software accompanying the device. A simple average is used to aggregate multiple spectral components into EEG bands, such as α, β, and γ bands. The chosen classifiers are SVM (support vector machine) and multi-layer feedforward network trained individually for each subject. Experimental results show that features, with α+β+γ bands and bandwidth 4 Hz, the average accuracy over all subjects in both runs can reach more than 80% and some subjects up to 90+% with the SVM classifier. The results suggest that a brain machine interface could be implemented based on the mental states of the user even with the use of a cheap EEG device.


Author(s):  
Mehrdad Oghazian ◽  
Farzad Saffari ◽  
Ali Khadem

Purpose: Inhibitory and excitatory neurons play an essential role in brain function, and we aim to introduce an automatic method to discriminate these two populations based on features of the shape of their spikes. Consequently, we will explain the spike extraction from raw data of a single shank electrode and determine the best features of spike waveforms for the classification of neurons. It is noteworthy that, to the best of our knowledge, classification of inhibitory and excitatory neurons using the shape features extracted from their spike waveforms has not been done before. Materials and Methods: In this paper, we use a dataset of mouse hippocampus neurons in which the neuron types (inhibitory or excitatory) have been verified optogenetically. For the classification of mouse hippocampus neurons, we extracted eight shape features of their spike waveforms in addition to their firing rates and used three types of classifiers: K-Nearest Neighbors (KNN), Linear Discriminant Analysis (LDA), and Support Vector Machine (SVM) to analyze the discriminatory power of features based on the accuracy of the classifications. Results: We showed that Spike asymmetry, Peak-to-trough ratio, Recovery slope, and Duration between peaks were four shape features of spike waveforms participated in the optimum feature subsets that resulted in maximum classification accuracy. Moreover, the SVM classifier with RBF kernel resulted in maximum accuracy of %96.91 ± %13.03 and was identified as the best classifier. Conclusion: In this study, we found that shape features of spike waveforms can accurately classify inhibitory and excitatory neurons of mouse hippocampus. Also, we found an optimum subset of shape features of spike waveforms that resulted in better classification performance than previously proposed subsets of features used for clustering of neurons. Our findings open a promising way toward a functional classification of neurons automatically.


Sensors ◽  
2019 ◽  
Vol 19 (9) ◽  
pp. 1986 ◽  
Author(s):  
Yue Zhang ◽  
Jing Yu ◽  
Chunming Xia ◽  
Ke Yang ◽  
Heng Cao ◽  
...  

This study investigated classification of six types of head motions using mechanomyography (MMG) signals. An unequal segmenting algorithm was adopted to segment the MMG signals generated by head motions. Three types of features (time domain, time-frequency domain and nonlinear dynamics) were extracted to construct five feature sets as candidate datasets for classification analysis. Genetic algorithm optimized support vector machine (GA-SVM) was used to classify the MMG signals. Three different kernel functions, different combinations of feature sets, different number of signal channels and training samples were selected for comparative analysis to evaluate the classification accuracy. Experimental results showed that the classifier had the best overall classification accuracy when using the radial basis function (RBF). Any combination of three different types of feature sets guaranteed an average accuracy of over 80%. In the case of the best combination (feature set 2 + 3 + 5), the classification accuracy was up to 88.2%. Using four channels to acquire MMG signal and no less than 60 training samples can assure a satisfactory classification accuracy.


2015 ◽  
Vol 27 (02) ◽  
pp. 1550015 ◽  
Author(s):  
Assya Bousbia-Salah ◽  
Malika Talha-Kedir

Wavelet transform decomposition of electroencephalogram (EEG) signals has been widely used for the analysis and detection of epileptic seizure of patients. However, the classification of EEG signals is still challenging because of high nonstationarity and high dimensionality. The aim of this work is an automatic classification of the EEG recordings by using statistical features extraction and support vector machine. From a real database, two sets of EEG signals are used: EEG recorded from a healthy person and from an epileptic person during epileptic seizures. Three important statistical features are computed at different sub-bands discrete wavelet and wavelet packet decomposition of EEG recordings. In this study, to select the best wavelet for our application, five wavelet basis functions are considered for processing EEG signals. After reducing the dimension of the obtained data by linear discriminant analysis and principal component analysis (PCA), feature vectors are used to model and to train the efficient support vector machine classifier. In order to show the efficiency of this approach, the statistical classification performances are evaluated, and a rate of 100% for the best classification accuracy is obtained and is compared with those obtained in other studies for the same dataset. However, this method is not meant to replace the clinician but can assist him for his diagnosis and reinforce his decision.


2018 ◽  
Vol 7 (2.6) ◽  
pp. 163
Author(s):  
D Hari Krishna ◽  
I A.Pasha ◽  
T Satya Savithri

To communicate without any muscle movement and purely based on brain signal has been the goal of Brain computer interfacing (BCI). Recent BCI based studies reported more and more accurate detection of brain states. This paper proposes a study that detects EEG signal belonging todifferent imaginary motor activities (Right leg, right hand, left leg and left hand). The Electroencephalogram (EEG) signal has been conditioned by band pass filter (BPF) to improve signal to noise ratio (SNR). The proposed method is based on similarity between signals to extract features. For measuring the similarity between signals, Cross correlation (CC) is used. An ensemble set of five classifiers (Linear Discriminant Analysis (LDA), K-Nearest Neighbors (KNN), Support Vector Machine (SVM), Naïve Bayes (NB) and Binary Decision Tree) was used collectively.  As the similarity measurement was binary in nature, one versus rest (OVR) approach was used for multi class classification. Random subset of features was used to train the ensemble of classifiers. The classification label was obtained by using majority voting. An average accuracy of 89.57% was observed among all 10 subjects.


Computers ◽  
2021 ◽  
Vol 10 (9) ◽  
pp. 112
Author(s):  
Marcelo Picolotto Corso ◽  
Fabio Luis Perez ◽  
Stéfano Frizzo Stefenon ◽  
Kin-Choong Yow ◽  
Raúl García Ovejero ◽  
...  

Contamination on insulators may increase the surface conductivity of the insulator, and as a consequence, electrical discharges occur more frequently, which can lead to interruptions in a power supply. To maintain reliability in an electrical distribution power system, components that have lost their insulating properties must be replaced. Identifying the components that need maintenance is a difficult task as there are several levels of contamination that are hard to notice during inspections. To improve the quality of inspections, this paper proposes using k-nearest neighbors (k-NN) to classify the levels of insulator contamination based on images of insulators at various levels of contamination simulated in the laboratory. Computer vision features such as mean, variance, asymmetry, kurtosis, energy, and entropy are used for training the k-NN. To assess the robustness of the proposed approach, a statistical analysis and a comparative assessment with well-consolidated algorithms such as decision tree, ensemble subspace, and support vector machine models are presented. The k-NN showed up to 85.17% accuracy using the k-fold cross-validation method, with an average accuracy higher than 82% for the multi-classification of contamination of insulators, being superior to the compared models.


Author(s):  
Marcelo Picolotto Corso ◽  
Fabio Luis Perez ◽  
Stéfano Frizzo Stefenon ◽  
Kin-Choong Yow ◽  
Raúl García Ovejero ◽  
...  

The contamination on the insulators may increase its surface conductivity and, as a consequence, electrical discharges occur more frequently, which can lead to interruptions in the power supply. To maintain reliability in the electrical distribution power system, components that have lost their insulating properties must be replaced. Identifying the components that need maintenance, is a difficult task as there are several levels of contamination that are hardly noticed during inspections. To improve the quality of inspections, this paper proposes to use the k-nearest neighbours (k-NN) to classify the levels of insulator contamination, based on the image of insulators at various levels of contamination simulated in the laboratory. Using computer vision features such as mean, variance, asymmetry, kurtosis, energy, and entropy are used for training the k-NN. To assess the robustness of the proposed approach, statistical analysis and a comparative assessment with well-consolidated algorithms such as decision tree, ensemble subspace, and support vector machine models are presented. The k-NN showed results of up to 85.17 % accuracy using the k-fold cross-validation method, with an average accuracy higher than 82 % for multi-classification of the contamination of the insulators, being superior to the compared models.


2017 ◽  
Vol 100 (2) ◽  
pp. 345-350 ◽  
Author(s):  
Ana M Jiménez-Carvelo ◽  
Antonio González-Casado ◽  
Estefanía Pérez-Castaño ◽  
Luis Cuadros-Rodríguez

Abstract A new analytical method for the differentiation of olive oil from other vegetable oils using reversed-phaseLC and applying chemometric techniques was developed. A 3 cm short column was used to obtain the chromatographic fingerprint of the methyl-transesterified fraction of each vegetable oil. The chromatographic analysis tookonly 4 min. The multivariate classification methods used were k-nearest neighbors, partial least-squares (PLS) discriminant analysis, one-class PLS, support vector machine classification, and soft independent modeling of class analogies. The discrimination of olive oil from other vegetable edible oils was evaluated by several classification quality metrics. Several strategies for the classification of the olive oil wereused: one input-class, two input-class, and pseudo two input-class.


Sign in / Sign up

Export Citation Format

Share Document