scholarly journals The design of virtual lower limb rehabilitation for post-stroke patients

Author(s):  
Lee Wei Jian ◽  
Syadiah Nor Wan Shamsuddin

Stroke is one of the leading causes that elicits to disability for adults over a long period. Post-stroke patients often have difficulties with joints and muscles in their legs, which prevents them from moving around. Lower limb rehabilitation helps to regain normal mobility and functionality of patients such as standing, walking and climbing stairs. The implementation of virtual reality in stroke rehabilitation helps to encourage patients on frequent engagement with exercise. This paper briefly presents the ongoing research regarding lower limb rehabilitation systems for post-stroke patient in virtual reality environment to provide an overview of the conceptual design, limitations, and suggestions for future work in this direction.

Author(s):  
Bogdan Gherman ◽  
Iosif Birlescu ◽  
Paul Tucan ◽  
Calin Vaida ◽  
Adrian Pisla ◽  
...  

As the life span increases and the availability of physicians becomes more and more scarce, robotic rehabilitation for post-stroke patients becomes more and more demanding, especially due to the repeatability character of the rehabilitation exercises. Both lower and upper limb rehabilitation using robotic systems have proved to be very successful in different stages of the rehabilitation process, but only a few address the immediate (critical) post-stroke phase, especially when the patient is hemiplegic and is unable to stand. The paper presents the kinematic modelling, singularity analysis and gait simulation for a new 4-DOF parallel robot named RECOVER used for lower limb rehabilitation for bedridden patients. The robotic system has been designed for the mobilization of the lower limb, namely the following motions: the hip and knee flexion and the plantar adduction/abduction and flexion/dorsiflexion. The kinematics has been studied and the singularity configurations have been determined to achieve a failsafe rehabilitation robot. Numerical simulations prove that the system can be used for gait training exercises in safe conditions.


2014 ◽  
Vol 14 (06) ◽  
pp. 1440004 ◽  
Author(s):  
SHUAI GUO ◽  
JIANCHENG JI ◽  
GUANGWEI MA ◽  
TAO SONG ◽  
JING WANG

After analyzing the rehabilitation needs of stroke patients and the previous studies on lower limb rehabilitation robot, our lower limb rehabilitation robot is designed for stroke patients' gait and balance training. The robot consists of the mobile chassis, the support column and the pelvis mechanism and it is described in detail. As the pelvis mechanism allows most of the patient's motion degrees of freedom (DOFs), the kinematics model of the mechanism is set up, and kinematics simulation is carried out to study the motion characteristics of the mechanism. After analyzing the calculation and simulation results, the pelvis mechanism is proven to measure up to the movement needs of the paralytic's waist and pelvis in walking rehabilitation process.


Machines ◽  
2021 ◽  
Vol 9 (10) ◽  
pp. 224
Author(s):  
Xusheng Wang ◽  
Yongfei Feng ◽  
Jiazhong Zhang ◽  
Yungui Li ◽  
Jianye Niu ◽  
...  

Carrying out the immediate rehabilitation interventional therapy will better improve the curative effect of rehabilitation therapy, after the condition of bedridden stroke patients becomes stable. A new lower limb rehabilitation training module, as a component of a synchronous rehabilitation robot for bedridden stroke patients’ upper and lower limbs, is proposed. It can electrically adjust the body shape of patients with a different weight and height. Firstly, the innovative mechanism design of the lower limb rehabilitation training module is studied. Then, the mechanism of the lower limb rehabilitation module is simplified and the geometric relationship of the human–machine linkage mechanism is deduced. Next, the trajectory planning and dynamic modeling of the human–machine linkage mechanism are carried out. Based on the analysis of the static moment safety protection of the human–machine linkage model, the motor driving force required in the rehabilitation process is calculated to achieve the purpose of rationalizing the rehabilitation movement of the patient’s lower limb. To reconstruct the patient’s motor functions, an active training control strategy based on the sandy soil model is proposed. Finally, the experimental platform of the proposed robot is constructed, and the preliminary physical experiment proves the feasibility of the lower limb rehabilitation component.


2018 ◽  
Vol 7 (2.34) ◽  
pp. 56 ◽  
Author(s):  
Syed Faiz Ahmed ◽  
M Kamran Joyo ◽  
Athar Ali ◽  
Abdul Malik M. Ali ◽  
Kushsairy A. Kadir ◽  
...  

Wearable devices such as exoskeletons are being opted frequently during rehabilitation processes for the post stroke recovery. Such devices are playing important role in the development of assistive rehabilitation robotic systems. In this paper three control strategies MPC and LQR and PID are introduced which were applied to knee joint of lower limb exoskeleton model for passive exercise. The two controls MPC and LQR are model based control which empowers them for stable responses. In this paper the analysis of robustness of control is done under the noisy and disturbance conditions. The results showed good performance of the exoskeleton model with the applied controls in the provided condition. In the future work the applied controls will be implemented on hardware.


Sign in / Sign up

Export Citation Format

Share Document