scholarly journals Parallel multi-layer selector S-Box based on lorenz chaotic system with FPGA implementation

Author(s):  
Mohamed Saber ◽  
Esam Hagras

<p><span>The substitution box (S-Box) is the main block in the encryption system, which replaces the non-encrypted data by dynamic secure and hidden data. S-Box can be designed based on complex nonlinear chaotic systems that presented in recent papers as a chaotic S-Box. The hardware implementation of these chaotic systems suffers from long processing time (low speed), and high-power consumption since it requires a large number of non-linear computational models. In this paper, we present a high-speed FPGA implementation of Parallel Multi-Layer Selector Substitution Boxes based on the Lorenz Chaotic System (PMLS S-Box). The proposed PMLS chaotic S-Box is modeled using Xilinx System Generator (XSG) in 32 bits fixed-point format, and the architecture implemented into Xilinx Spartan-6 X6SLX45 board. The maximum frequency of the proposed PMLS chaotic S-Box is 381.764 MHz, with dissipates of 77 mwatt. Compared to other S-Box chaotic systems, the proposed one achieves a higher frequency and lower power consumption. In addition, the proposed PMLS chaotic S-Box is analyzed based on S-Box standard tests such as; Bijectivity property, nonlinearity, strict avalanche criterion, differential probability, and bits independent criterion. The five different standard results for the proposed S-Box indicate that PMLSC can effectively resist crypto-analysis attacks, and is suitable for secure communications.</span></p>

Chaotic systems plays a vital role in the field of security, data hiding and steganography. FPGA implementation makes more advantageous compared to analog one. Different chaotic systems like chaos generator and nondeterministic number generator used for security purpose and key generation were successfully realized in FPGA. In this paper, FPGA implementation of Pandey-Baghel-Singh chaotic system (PBSCS) using Euler and RK4 numerical algorithms is presented. Pandey-Baghel-Singh chaotic system were obtained using numerical differential solution and numerically modelled in Verilog with the environment of Xilinx Vivado 2017.3 design suite. The design is verified using experimental setup with the help of interfacing to PC and FPGA family of Artix-7 Nexys 4 DDR and Basys3. Performance of the FPGA based chaotic generator using Euler and RK4 algorithm are analyzed using 1 GB data sets with the maximum operating frequency achieved up to 359.71 MH


Complexity ◽  
2017 ◽  
Vol 2017 ◽  
pp. 1-11 ◽  
Author(s):  
Runzi Luo ◽  
Haipeng Su ◽  
Yanhui Zeng

This paper investigates the control and synchronization of a class of chaotic systems with switched output which is assumed to be switched between the first and the second state variables of chaotic system. Some novel and yet simple criteria for the control and synchronization of a class of chaotic systems are proposed via the switched output. The generalized Lorenz chaotic system is taken as an example to show the feasibility and efficiency of theoretical results.


Entropy ◽  
2019 ◽  
Vol 21 (10) ◽  
pp. 1004 ◽  
Author(s):  
Lu ◽  
Zhu ◽  
Wang

Substitution-boxes (S-Boxes) are important non-linear components in block cryptosystem, which play an important role in the security of cryptosystems. Constructing S-Boxes with a strong cryptographic feature is an important step in designing block cipher systems. In this paper, a novel algorithm for constructing S-Boxes based on a new compound chaotic system is presented. Firstly, the new chaotic system, tent–logistic system, is proposed, which has better chaotic performance and wider chaotic range than the tent and logistic system, and can not only increase the randomness of the chaotic sequences but also expand the key space of cryptosystems. Secondly, a novel linear mapping is employed to construct the initial S-Box. Then, the permutation operation on the initial S-Box is performed by using chaotic sequence generated with the tent–logistic system, which improves the cryptographic features of the S-Box. The idea behind the proposed work is to make supplementary safe S-box. Detail tests for cryptographic strength of the proposed S-Box are performed by using different standard benchmarks. The test results and performance analysis show that our proposed S-Box has very smaller values of linear probability (LP) and differential probability (DP) and a satisfactory average value of nonlinearity compared with other S-Boxes, showing its excellent application potential in block cipher system.


2013 ◽  
Vol 18 (1) ◽  
pp. 66-77 ◽  
Author(s):  
Chunlai Li ◽  
Lei Wu ◽  
Hongmin Li ◽  
Yaonan Tong

Based on the construction pattern of Chen, Liu and Qi chaotic systems, a new threedimensional (3D) chaotic system is proposed by developing Lorenz chaotic system. It’s found that when parameter e varies, the Lyapunov exponent spectrum keeps invariable, and the signal amplitude can be controlled by adjusting e. Moreover, the horseshoe chaos in this system is investigated based on the topological horseshoe theory.


2021 ◽  
Vol 6 (11) ◽  
pp. 12395-12421
Author(s):  
Anastacia Dlamini ◽  
◽  
Emile F. Doungmo Goufo ◽  
Melusi Khumalo

<abstract><p>The widespread application of chaotic dynamical systems in different fields of science and engineering has attracted the attention of many researchers. Hence, understanding and capturing the complexities and the dynamical behavior of these chaotic systems is essential. The newly proposed fractal-fractional derivative and integral operators have been used in literature to predict the chaotic behavior of some of the attractors. It is argued that putting together the concept of fractional and fractal derivatives can help us understand the existing complexities better since fractional derivatives capture a limited number of problems and on the other side fractal derivatives also capture different kinds of complexities. In this study, we use the newly proposed Caputo-Fabrizio fractal-fractional derivatives and integral operators to capture and predict the behavior of the Lorenz chaotic system for different values of the fractional dimension $ q $ and the fractal dimension $ k $. We will look at the well-posedness of the solution. For the effect of the Caputo-Fabrizio fractal-fractional derivatives operator on the behavior, we present the numerical scheme to study the graphical numerical solution for different values of $ q $ and $ k $.</p></abstract>


Mathematics ◽  
2019 ◽  
Vol 7 (6) ◽  
pp. 559 ◽  
Author(s):  
Liang Chen ◽  
Chengdai Huang ◽  
Haidong Liu ◽  
Yonghui Xia

The paper proves a unified analysis for finite-time anti-synchronization of a class of integer-order and fractional-order chaotic systems. We establish an effective controller to ensure that the chaotic system with unknown parameters achieves anti-synchronization in finite time under our controller. Then, we apply our results to the integer-order and fractional-order Lorenz system, respectively. Finally, numerical simulations are presented to show the feasibility of the proposed control scheme. At the same time, through the numerical simulation results, it is show that for the Lorenz chaotic system, when the order is greater, the more quickly is anti-synchronization achieved.


2021 ◽  
Vol 2021 ◽  
pp. 1-8 ◽  
Author(s):  
Juan Liu ◽  
Xuefeng Cheng ◽  
Ping Zhou

In this study, a modified fractional-order Lorenz chaotic system is proposed, and the chaotic attractors are obtained. Meanwhile, we construct one electronic circuit to realize the modified fractional-order Lorenz chaotic system. Most importantly, using a linear resistor and a fractional-order capacitor in parallel coupling, we suggested one chaos synchronization scheme for this modified fractional-order Lorenz chaotic system. The electronic circuit of chaos synchronization for modified fractional-order Lorenz chaotic has been given. The simulation results verify that synchronization scheme is viable.


2011 ◽  
Vol 255-260 ◽  
pp. 2242-2247
Author(s):  
Peng Cheng Wei ◽  
Wei Ran ◽  
Jun Jian Huang

A secure communication scheme based on piecewise linear chaotic system is proposed. Two Chaotic Systems are used in this algorithm, with a symbolic sequence generated by a Chaotic System the message sequence is tracked, employing the chaotic masking technique the message for transmitted is encrypted with a binary sequence extracted from another Chaotic System. The theoretic and experience results stated that the proposed algorithm has many properties such as high speed and easy implementing and high security and it is suitable for practical use in the secure communication.


Sign in / Sign up

Export Citation Format

Share Document