scholarly journals Securing sensor data transmission with ethernet elliptic curve cryptography secure socket layer on STM32F103 device

Author(s):  
Seniman Seniman ◽  
Baihaqi Siregar ◽  
Rani Masyithah Pelle ◽  
Fahmi Fahmi

Currently there is no method, feature, or ability in securing data transmission in microcontroller systems and applications with client-server scheme communication, while major modern computer systems using secure socket layer (SSL) for establishing secure communication. However, ESP espressif based microcontroller has supported SSL communication to secure data transmission, but only works on the Wi-Fi network. A single-board computer based embedded system has fully supported SSL communication, but it costs a very high price. On the other hand, STM32F103 microcontrollers with a very affordable price even cheaper than the Arduino board has the opportunity to build secure data communication using SSL protocol based on MbedTLS library. In addition to wiznet W5100/W5500 ethernet shield, an STM32F103 SSL client device has been successfully built in this study. The SSL client device supports ECDHE ECDHA AES128 CBC SHA256 SSL cipher suite. The Apache web server must also be configured to support this cipher suite by generating OpenSSL ECC (elliptic curve cryptography) certificate. The system was tested with the LM35 analog temperature sensor, and as a result, the STM32F103 SSL client has successfully secured the data transmission to the Apache SSL web server. The communication time was 3 seconds for the first connection and 42 ms for the next data transmission.

Author(s):  
Jeenat Sultana ◽  
Tasnuva Ahmed

Mobile nodes roaming around in the hostile environment of mobile adhoc network (MANET) play the role of router as well as terminal. While acting as a router, a node needs to choose a reliable routing protocol. Besides, an encryption algorithm is needed to secure data to be conveyed through the unfriendly atmosphere while acting as a terminal. We have implemented Elliptic Curve Cryptography (ECC) along with Adhoc On Demand Multipath Distance Vector (AOMDV) routing protocol to secure data transmission against blackhole attack in a MANET. ECC, a public key cryptography that works on discrete logarithm problem with a much smaller key size, has been used to encrypt data packets at source node before transmission. We have used AOMDV, a reliable routing protocol compared to its parent protocol, Adhoc On Demand Distance Vector (AODV), with a multipath extension, for routing. The encrypted packets transferring between nodes via AOMDV, has been proved secured against blackhole attack. The performance of the secured protocol has been analyzed in terms of different performance metrics and in terms of varying number of blackhole attacker nodes.


Internet of Things(IoT) is playing a pivotal role in our daily life as well as in various fields like Health, agriculture, industries etc. In the go, the data in the various IoT applications will be easily available to the physical dominion and thus the process of ensuringthe security of the data will be a major concern. For the extensive implementation of the numerous applications of IoT , the data security is a critical component. In our work, we have developed an encryption technique to secure the data of IoT. With the help of Merkle-Hellman encryption the data collected from the various IoT devices are first of all encrypted and then the secret message is generated with the help of Elliptic Curve Cryptography.


2020 ◽  
Vol 8 (5) ◽  
pp. 5560-5563

Wireless Sensor Network (WSN) extends the advantages of small price, quick employment, and shared transaction medium, although it induces a lot of security and secrecy challenges. In this paper, the Elliptic Curve Cryptography based Secure Data Communication and Enhance sensor Reliability (SDER) in WSN. In this scheme, an Elliptic Curve Cryptography (ECC) Weierstrass function is used to verify the sensor reliability, and ECC cryptography technique is useful for providing the data security in the network. The simulation result demonstrates that the SDER reduces both the packet loss rate and the network delay.


Author(s):  
Behnam Rahnama ◽  
Arif Sari ◽  
Marwan Yassin Ghafour

Security is utilized to keep the information safe. Online resources, e-commerce, internet banking and a lot of similar services are protected by use of well-known protocols such as Secure Socket Layer (SSL). This protocol makes use of the RSA key exchange protocol for authentication. New innovations and boost ups in the computational power of supercomputers today makes it quite easier than before to break through RSA and consequently decrypt the payload transferred over SSL. In this research demonstrates the use of SSL; how to utilize it in the best shape? We also discuss reasons of why we need to improve its strength. The proposed solution is to replace the RSA key exchange mechanism utilized in SSL with Elliptic Curve Cryptography (ECC).


2021 ◽  
Vol 11 (12) ◽  
pp. 5316
Author(s):  
Ghadah Aldabbagh ◽  
Daniyal M. Alghazzawi ◽  
Syed Hamid Hasan ◽  
Mohammed Alhaddad ◽  
Areej Malibari ◽  
...  

The utilization of mobile learning continues to rise and has attracted many organizations, university environments and institutions of higher education all over the world. The cloud storage system consists of several defense issues since data security and privacy have become known as the foremost apprehension for the users. Uploading and storing specific data in the cloud is familiar and widespread, but securing the data is a complicated task. This paper proposes a cloud-based mobile learning system using a hybrid optimal elliptic curve cryptography (HOECC) algorithm comprising public and private keys for data encryption. The proposed approach utilizes an adaptive tunicate slime-mold (ATS) algorithm to generate optimal key value. Thus, the data uploaded in the cloud system are secured with high authentication, data integrity and confidentiality. The study investigation employed a survey consisting of 50 students and the questionnaire was sent to all fifty students. In addition to this, for obtaining secure data transmission in the cloud, various performance measures, namely the encryption time, decryption time and uploading/downloading time were evaluated. The results reveal that the time of both encryption and decryption is less in ATF approach when compared with other techniques.


Sign in / Sign up

Export Citation Format

Share Document