Secured Data Transmission Using Elliptic Curve Cryptography

Author(s):  
K.S.Abitha, Anjali pandey

Internet of Things(IoT) is playing a pivotal role in our daily life as well as in various fields like Health, agriculture, industries etc. In the go, the data in the various IoT applications will be easily available to the physical dominion and thus the process of ensuringthe security of the data will be a major concern. For the extensive implementation of the numerous applications of IoT , the data security is a critical component. In our work, we have developed an encryption technique to secure the data of IoT. With the help of Merkle-Hellman encryption the data collected from the various IoT devices are first of all encrypted and then the secret message is generated with the help of Elliptic Curve Cryptography.


Author(s):  
Jeenat Sultana ◽  
Tasnuva Ahmed

Mobile nodes roaming around in the hostile environment of mobile adhoc network (MANET) play the role of router as well as terminal. While acting as a router, a node needs to choose a reliable routing protocol. Besides, an encryption algorithm is needed to secure data to be conveyed through the unfriendly atmosphere while acting as a terminal. We have implemented Elliptic Curve Cryptography (ECC) along with Adhoc On Demand Multipath Distance Vector (AOMDV) routing protocol to secure data transmission against blackhole attack in a MANET. ECC, a public key cryptography that works on discrete logarithm problem with a much smaller key size, has been used to encrypt data packets at source node before transmission. We have used AOMDV, a reliable routing protocol compared to its parent protocol, Adhoc On Demand Distance Vector (AODV), with a multipath extension, for routing. The encrypted packets transferring between nodes via AOMDV, has been proved secured against blackhole attack. The performance of the secured protocol has been analyzed in terms of different performance metrics and in terms of varying number of blackhole attacker nodes.


Author(s):  
Md Sirajul Huque ◽  
Sk. Bhadar Saheb ◽  
Jayaram Boga

Wireless sensor networks (WSN) are a collection of autonomous collection of motes. Sensor motes are usually Low computational and low powered. In WSN Sensor motes are used to collect environmental data collection and pass that data to the base station. Data aggregation is a common technique widely used in wireless sensor networks. [2] Data aggregation is the process of collecting the data from multiple sensor nodes by avoiding the redundant data transmission and that collected data has been sent to the base station (BS) in single route. Secured data aggregation deals with Securing aggregated data collected from various sources. Many secured data aggregation algorithms has been proposed by many researchers. Symmetric key based cryptography schemes are not suitable when wireless sensor network grows. Here we are proposing an approach to secured data aggregation in wireless sensor networks using Asymmetric key based Elliptic Curve cryptography technique. Elliptic curve cryptography (ECC) [1] is an approach to public-key cryptography based on the algebraic structure of elliptic curves over finite fields. Elliptic Curve Cryptography requires smaller keys compared to non-Elliptic curve cryptography (based on plain Galois fields) to provide equivalent security. The proposed technique of secure data aggregation is used to improve the sensor network lifetime and to reduce the energy consumption during aggregation process.


Author(s):  
Seniman Seniman ◽  
Baihaqi Siregar ◽  
Rani Masyithah Pelle ◽  
Fahmi Fahmi

Currently there is no method, feature, or ability in securing data transmission in microcontroller systems and applications with client-server scheme communication, while major modern computer systems using secure socket layer (SSL) for establishing secure communication. However, ESP espressif based microcontroller has supported SSL communication to secure data transmission, but only works on the Wi-Fi network. A single-board computer based embedded system has fully supported SSL communication, but it costs a very high price. On the other hand, STM32F103 microcontrollers with a very affordable price even cheaper than the Arduino board has the opportunity to build secure data communication using SSL protocol based on MbedTLS library. In addition to wiznet W5100/W5500 ethernet shield, an STM32F103 SSL client device has been successfully built in this study. The SSL client device supports ECDHE ECDHA AES128 CBC SHA256 SSL cipher suite. The Apache web server must also be configured to support this cipher suite by generating OpenSSL ECC (elliptic curve cryptography) certificate. The system was tested with the LM35 analog temperature sensor, and as a result, the STM32F103 SSL client has successfully secured the data transmission to the Apache SSL web server. The communication time was 3 seconds for the first connection and 42 ms for the next data transmission.


Author(s):  
Kazuki NAGANUMA ◽  
Takashi SUZUKI ◽  
Hiroyuki TSUJI ◽  
Tomoaki KIMURA

Sign in / Sign up

Export Citation Format

Share Document