Performance Evaluation of Fractal Array Antenna for Small Satellite Applications

Author(s):  
Yemane Ghebremedhin Teklehaimanot ◽  
Sinshaw Bekelle ◽  
Mohammed Ismail

<p class="Default">The possible antenna which can be integrated with relatively large flat structure of solar panel of small satellites is patch antenna. The main problem of common Microstrip patch antennas is that they only operate at one or two frequencies, restricting the number of bands that equipment is capable of supporting. Another issue is that, due to the very strict space that a solar panel has, setting up more antenna array is very difficult. To reduce these problems, the use of fractal shaped antennas integrated on solar cells will be analyzed. The small satellite applications demand a high efficient multi-band antenna with a very compact size. A 2x2 Sierpinski Fractal antenna array is modeled and simulated using HFSS. The proposed work has resulted in multiband operation 10.2 GHz and 18.3GHz with increased bandwidth and radiation characteristics betterment, with added advantage of light weight and smaller dimension which is important where cost to payload is a constraint in satellites.</p>

2013 ◽  
Vol 2013 ◽  
pp. 1-6 ◽  
Author(s):  
Gokmen Isik ◽  
Serkan Topaloglu

An ultrawideband antenna is designed, simulated, and realized. To overcome the narrow bandwidth characteristics of basic patch antennas, the structure of the radiation pattern is optimized by the aid of elliptical and rectangular patches. Also triangular patches are applied to the antenna edge in order to enhance the VSWR and gain properties. A typical VSWR of 1.5 (less than 2 in the whole frequency range) and a typical gain of 2 dBi (mainly above 1 dBi in the whole frequency range) are observed. The simulations present that the designed antenna has a bandwidth ratio of ~5 : 1 within the frequency range of 4–19.1 GHz with compact dimensions of 25 × 26 mm2. It is fabricated on a 0.5 mm thick, RO3035 substrate. The input impedance, gain, and radiation characteristics of the antenna are also presented. With these properties, it is verified that, with its novel shape, the proposed antenna can be used for various UWB applications.


2014 ◽  
Vol 2014 ◽  
pp. 1-9 ◽  
Author(s):  
Weiwei Xu ◽  
Junhong Wang ◽  
Meie Chen ◽  
Zhan Zhang ◽  
Zheng Li

This paper presents a method for implementing a low in-band scattering design for microstrip patch antennas based on the analysis of structural mode scattering and radiation characteristics. The antenna structure is first designed to have the lowest structural mode scattering in a desired frequency band. The operating frequency band of the antenna is then changed to coincide with that of the lowest structural mode scattering by adjusting the feed position on the antenna (offset feeding) to achieve an antenna with low in-band radar cross section (RCS). In order to reduce the level of cross polarization of the antenna caused by offset feeding, symmetry feeding structures for both single patch antennas and two-patch arrays are proposed. Examples that show the efficiency of the method are given, and the results illustrate that the in-band RCS of the proposed antennas can be reduced by as much as 17 dBsm for plane waves impinging from the normal direction compared to patch antennas fed by conventional methods.


IEEE Access ◽  
2017 ◽  
Vol 5 ◽  
pp. 18356-18365 ◽  
Author(s):  
Jianquan Huang ◽  
Wei Lin ◽  
Feng Qiu ◽  
Chunzhi Jiang ◽  
Dajun Lei ◽  
...  

2019 ◽  
Vol 8 (4) ◽  
pp. 5078-5082

While the revolution in antenna engineering leads to the fast-growing communication systems, Microstrip Patch Antennas (MPA) have proven to be the most unconventional discovery in the epoch of miniaturization. This paper incorporates the designing, simulation, and analysis of rectangular & circular microstrip patch antennas. The resonating frequency of the proposed patch antennas is 9 GHz, lying in the X band region and are designed on Rogers RT/duroid 5880 material having dielectric constant 2.2, using Ansys HFSS software. The proposed MPAs were compared on the basis of five performance parameters (Return loss, Bandwidth, VSWR, Gain and HPBW). It was observed that rectangular MPA has a higher value of return loss, VSWR and HPBW than circular MPA. Whereas, circular MPA has greater bandwidth and gain than rectangular MPA. The proposed antennas can be used in radar, wireless and satellite applications.


2016 ◽  
Vol 2016 ◽  
pp. 1-9 ◽  
Author(s):  
Tao Jiang ◽  
Tianqi Jiao ◽  
Yingsong Li

A mutual coupling reduction method between microstrip antenna array elements is proposed by using periodic L-loading E-shaped electromagnetic band gap structures. Two identical microstrip patch antennas at 2.55 GHz are settled together and used to analyze the performance of the designed two-element antenna array. The two antenna elements are settled with a distance of about0.26λ. To reduce the mutual coupling, the L-loading E-shaped electromagnetic band gap structures are used between these antenna elements. The simulated and measured results show that the isolation of the antenna array reaches 38 dB, which has a mutual coupling reduction of 26 dB in comparison with the antenna array without the decoupling structures.


2013 ◽  
Vol 136 (1) ◽  
Author(s):  
Xiaoyong Zhang ◽  
Xiaojun Yan ◽  
Qiaolong Yang

The shape memory alloy (SMA)-actuated separation devices that are currently used in small satellites were usually designed to handle large separation loads. As a result, they have complex structures, large footprints, and high power consumptions. In this paper, we report a simpler and more compact separation device. A design methodology for the load-shifting SMA actuator (LSSA) used in a device was developed. Four prototypes were fabricated and tested to demonstrate the design concept and the LSSA design methodology. Experiments showed that this separation device has the merits of a quick response time, compact size, and simple structure, which give it potential for small-satellite applications.


Author(s):  
DESTI IKA SURYANTI ◽  
SRI RAMAYANTI ◽  
MOHAMMAD MUKHAYADI

ABSTRAKDesain satelit telah berkembang ke arah miniaturisasi untuk mengurangi biaya peluncuran. Satelit kecil menyediakan platform berbiaya rendah untuk misi luar angkasa. Salah satu permasalahan utama satelit kecil adalah terbatasnya ketersediaan daya. Karena ketersediaan daya diperlukan agar subsistem satelit dapat bekerja, maka pada proses desain satelit perlu dilakukan analisis dan estimasi ketersediaan daya selama satelit mengorbit dengan tetap mempertahankan kekompakan dan volume yang diberlakukan oleh standar. Penelitian ini bertujuan untuk mengetahui kondisi iluminasi matahari pada panel surya dari berbagai alternatif desain penempatan sehingga diperoleh sebuah desain yang efisien. Iluminasi maksimum sebuah panel surya triple junction yang terpasang secara body mounted pada satelit kurang lebih sebesar 60%. Berdasarkan hasil penelitian ini, kombinasi pemasangan 3 body mounted panel surya dan 2 simple deploy panel surya menghasilkan persentase iluminasi dua kali lipat dibandingkan 5 body mounted panel surya.Kata kunci: panel surya triple junction, iluminasi, body mounted, simple deploy, daya ABSTRACTSatellite design has envolved towards miniaturization to reduce launch costs. Small satellites provide a low-cost platform for space missions. One of the main problems with small satellites is the limited availability of power. Because the availability of power is needed so that the satellite subsystem can work, the satellite design process needs to analyze and estimated power availability as long as the satellite orbits while maintaining the compactness and volume imposed by the standard. This study aims to determine the conditions of solar illumination on solar panels from various alternative design placements in order to obtain an efficient design. Maximum illumination of triple junction solar panel mounted on a small satellite is approximately 60%. Based on the results of this study, the combination of installing 3 body mounted solar panels and 2 simple deploy solar panels produced twice the illumination percentage compared to 5 body mounted solar panels.Keywords: solar panel triple junction, illumination, body mounted, simple deploy, power


Sign in / Sign up

Export Citation Format

Share Document