scholarly journals The MPPT algorithm combined with pitch angle control for the small-scale wind turbine in a wide speed range

Author(s):  
Quang-Vi Ngo ◽  
Trong-Thang Nguyen

This research proposes the control system structure for a small-scale wind turbine. Significantly, the maximum power point tracking algorithm (MPPT) and the pitch angle controller are deeply analyzed; this is the base for proposing the strategy of the MPPT algorithm combined with pitch-angle control in a wide speed range of wind. This article also researches the converters, then analyses the advantages of each converter to choose the suitable converter for the small-scale wind turbine. In the MPPT algorithm design, the expert experience takes advantage through the fuzzy controller. The pitch angle controller is built based on the PID controller with its parameters adjusted by Fuzzy logic. The results showed that the effectiveness of the proposed control strategy is much better than that of the traditional control strategy. Moreover, in high and low wind speeds, the proposed control system operates reliably and stably.

Author(s):  
Quang-Vi Ngo ◽  
Chai Yi ◽  
Trong-Thang Nguyen

This paper presents the research on small-scale wind turbine systems based on the Maximum Power Point Tracking (MPPT) algorithm. Then propose a new structure of a small-scale wind turbine system to simplify the structure of the system, making the system highly practical. This paper also presented an MPPT-Fuzzy controller design and proposed a control system using the wind speed sensor for small-scale wind turbines. Systems are simulated using Matlab/Simulink software to evaluate the feasibility of the proposed controller. As a result, the system with the MPPT-Fuzzy controller has much better quality than the traditional control system.


Author(s):  
Quang-Vi Ngo ◽  
Chai Yi ◽  
Trong-Thang Nguyen

<p>This paper aims to design the pitch angle control based on proportional–integral–derivative (PID) controller combined with fuzzy logic for small-scale wind turbine systems. In this control system, the pitch angle is controlled by the PID controller with their parameter is tuned by the fuzzy logic controller. This control system can compensate for the nonlinear characteristic of the pitch angle and wind speed. A comparison between the fuzzy-PID-controller with the conventional PID controller is carried out. The effectiveness of the method is determined by the simulation results of a small wind turbine using a permanent magnet generator (PMSG).</p>


Author(s):  
Ali Al-Abadi ◽  
YouJin Kim ◽  
Jin-young Park ◽  
Hyunjin Kang ◽  
Özgür Ertunc ◽  
...  

An optimization method that changes the control strategy of the Horizontal Axis Wind Turbine (HAWT) from passive- to active-pitch has been developed. The method aims to keep the rated power constant by adjusting the blade pitch angle while matching the rotor and the drive torques. The method is applied to an optimized wind turbine model. Further, numerical simulations were performed to validate the developed method and for further investigations of the flow behavior over the blades.


2020 ◽  
Vol 2020 ◽  
pp. 1-15
Author(s):  
Chenyang Yuan ◽  
Jing Li ◽  
Jianyun Chen ◽  
Qiang Xu ◽  
Yunfei Xie

The purpose of this paper is to explore the effect of the baseline control system (BCS) on the fragility of large-scale wind turbine when seismic and wind actions are considered simultaneously. The BCS is used to control the power output by regulating rotor speed and blade-pitch angle in real time. In this study, the fragility analysis was performed and compared between two models using different peak ground acceleration, wind speeds, and specified critical levels. The fragility curves with different wind conditions are obtained using the multiple stripe analysis (MSA) method. The calculation results show that the probability of exceedance specified critical level increases as the wind speed increases in model 1 without considering BCS, while does not have an obvious change in the below-rated wind speed range and has a significant decrease in the above-rated wind speed range in model 2 with considering BCS. The comparison depicts that if the BCS is neglected, the fragility of large-scale wind turbine will be underestimated in around the cut-in wind speed range and overestimated in the over-rated wind speed range. It is concluded that the BCS has a great effect on the fragility especially within the operating conditions when the rated wind speed is exceeded, and it should be considered when estimating the fragility of wind turbine subjected to the interaction of seismic and aerodynamic loads.


Author(s):  
Jianxin Shen ◽  
Dong-Min Miao

Purpose – The purpose of this paper is to focus on the machine design and control strategy of the permanent magnet synchronous generator (PMSG) system, especially utilized in variable speed applications, in order to stabilize the output voltage on the dc link over a wide speed range. Design/methodology/approach – Different ac/dc power converter topologies are comparatively studied, each with an accordingly designed PMSG, so as to investigate the influence of the armature winding inductance as well as the relationship between the PMSG and power converter topologies. Findings – Pulse width modulation (PWM) rectifier is preferable for the said application due to its good performance and controllability. Moreover, by employing the PWM rectifier, relatively large inductance of the PMSG is considered for both short-circuit current reduction and field regulation. Originality/value – Field-regulating control is realized with a space vector PWM (SVPWM) rectifier, which can weaken the PMSG magnetic field during high-speed operation, while even properly enhance the field at low speed, ensuring a small change of the PMSG output voltage and a stable dc voltage.


Sign in / Sign up

Export Citation Format

Share Document