scholarly journals Least mean sixth control approach for three-phase three-wire grid-integrated PV system

Author(s):  
Touheed Khan ◽  
Mohammed Asim ◽  
Mohammad Saood Manzar ◽  
Md Ibrahim ◽  
Shaikh Sadaf Afzal Ahmed

<p><span lang="EN-US">This work proposes an adaptive filter based on a new least mean sixth control approach with incremental conductance method of MPP for 3-phase grid-incorporated photovoltaic (PV) system. The proposed system comprises a PV array, 3-phase DC to AC converter, maximum power point tracker (MPPT), three-phase electronic load, and a 3-phase grid. The combination of solar PV array and the voltage source converter (VSC) supplies power to the grid. The 3-phase inverter as a distribution static synchronous compensator (D-STATCOM) improves the quality of the system performance in case of zero solar irradiation. D-STATCOM also reduces total harmonic distortion (THD) in grid currents, improves power factor, and maintainsa constant voltage at the point of common coupling (PCC). The system modelling and simulation is achieved on MATLAB/Simulink. The proposed system performance has been found satisfactory and conform to IEEE-519 standards.</span></p>

Electronics ◽  
2020 ◽  
Vol 9 (9) ◽  
pp. 1512
Author(s):  
Mithun Madhukumar ◽  
Tonse Suresh ◽  
Mohsin Jamil

Photovoltaic (PV) systems have recently been recognized as a leading way in the production of renewable electricity. Due to the unpredictable changes in environmental patterns, the amount of solar irradiation and cell operating temperature affect the power generated by the PV system. This paper, therefore, discusses the grid-integrated PV system to extract maximum power from the PV array to supply load requirements and the supply surplus power to the AC grid. The primary design is to have maximum power point tracking (MPPT) of the non-uniformly irradiated PV array, conversion efficiency maximization, and grid synchronization. This paper investigates various MPPT control algorithms using incremental conductance method, which effectively increased the performance and reduced error, hence helped to extract solar array’s power more efficiently. Additionally, other issues of PV grid-connected system such as network stability, power quality, and grid synchronization functions were implemented. The control of the voltage source converter is designed in such a way that PV power generated is synchronous to the grid. This paper also includes a comparative analysis of two MPPT techniques such as incremental conductance (INC) and perturb-and-observe (P&O). Extensive simulation of various controllers has been conducted to achieve enhanced efficient power extraction, grid synchronization and minimal performance loss due to dynamic tracking errors, particularly under fast-changing irradiation in Matlab/Simulink. The overall results favour INC algorithm and meet the required standards.


Author(s):  
Pradeep Rai ◽  
Roshan Nayak

This paper proposes a nonlinear control methodology for three phase grid connected of PV generator. It consists of a PV arrays; a voltage source inverter, a grid filter and an electric grid. The controller objectives are threefold: i) ensuring the Maximum power point tracking (MPPT) in the side of PV panels, ii) guaranteeing a power factor unit in the side of the grid, iii) ensuring the global asymptotic stability of the closed loop system. Based on the nonlinear model of the whole system, the controller is carried out using a Lyapunov approach. It is formally shown, using a theoretical stability analysis and simulation results that the proposed controller meets all the objectives.


Author(s):  
K Latha Shenoy ◽  
C. Gurudas Nayak ◽  
Rajashekar P. Mandi

As conventional fossil fuel reserves shrink and the danger of climate change prevailing, the need for alternative energy sources is unparalleled. A smart approach to compensate the dependence on electricity generated by burning fossil fuels is through the power generation using grid connected PV system. Partial shading on PV array affects the quantity of the output power in photovoltaic (PV) systems. To extract maximum power from PV under variable irradiance, variable temperature and partial shading condition, various MPPT algorithms are used. Incremental conductance and fuzzy based MPPT techniques are used for maximum power extraction from PV array. Basically 11 kW Solar PV system comprising of PV array coupled with an Inverter through a dc-dc converter is considered for the analysis and output of the inverter is supplied to the load through the LCL filter. An Intelligent controller for maximum power point tracking of PV power is designed. Also, a fuzzy controller for VSC is developed to improve the system performance. The above proposed design has been simulated in the MATLAB/Simulink and analyzed the system performance under various operating conditions. Finally, the performance is evaluated with IEEE 1547 standard for showing the effectiveness of the system.


A reliable grid connected Photovoltaic (PV) system require effective control schemes for efficient use of solar energy. This paper presents a three-phase grid tied PV system with decoupled real and reactive power control to achieve desired power factor with Maximum Power Point Tracking (MPPT) controller to get maximum solar energy. The synchronous reference frame (dq) control along with decoupling concept is used to control the DC-AC inverter output, while the Phase Locked Loop (PLL) synchronization technique is used to monitor and synchronize the voltage and current at the grid side. The DC-DC converter with Incremental Conductance (InC) based MPPT model is also designed in this paper due to better accuracy compared to Perturb & Observe (P&O) algorithm. The simulation is performed in MATLAB/SIMULINK and a 31.5 kW PV system is modelled to get 30 kW power with the help of MPPT at Standard Test Conditions (STC). Any power factor value between 0.85 lagging to 0.9 leading can be obtained by changingreference q current in this inverter control strategy. The simulation results show that the change of reactive powerdoes not affecttheactive power values of the system, which verifies the effectiveness of the decoupled control strategy of the inverter.


2019 ◽  
Vol 11 (21) ◽  
pp. 67-74
Author(s):  
Imad Jawad Khadim

PV connected systems are worldwide installed because it allows consumer to reduce energy consumption from the electricity grid. This paper presents the results obtained from monitoring a 1.1 kWp. The system was monitored for nine months and all the electricity generated was fed to the fifth floor for physics and renewable energy building   220 V, 50 Hz. Monthly, and daily performance parameters of the PV system are evaluated which include: average generated of system Ah per day, average system efficiency, solar irradiation around these months. The average generated kWh per day was 8 kWh/day, the average solar irradiation per day was 5.6 kWh/m2/day, the average inverter efficiency was 95%, the average modules efficiency was 12%.


2018 ◽  
Vol 7 (2.31) ◽  
pp. 97 ◽  
Author(s):  
M Jayakumar ◽  
V Vanitha ◽  
V Jaisuriya ◽  
M Karthikeyan ◽  
George Daniel ◽  
...  

Solar power is widely available around the globe but efficient transfer of solar power to the load becomes a challenging task. There are various methods in which the power transfer can be done, the following work proposes a method for efficient tracking of solar power.  MPPT [ maximum power point tracking] algorithm applied on three phase voltage source inverter connected to solar PV array with a three phase load. MPPT is applied on inverter rather than conventionally applying MPPT on DC-DC converter. Perturb and Observe method is applied in the MPPT algorithm to find the optimal modulation index for the inverter to transfer maximum power from the panel. Sine pulse width modulation technique is employed for controlling the switching pattern of the inverter. The algorithm is programmed for changing irradiation and temperature condition. The system does not oscillate about the MPP point as the algorithm set the system at MPP and does not vary till a variation in irradiation is sensed.  The proposed system can be installed at all places and will reduce the cost, size and losses compared to conventional system. 


2018 ◽  
Vol 7 (3) ◽  
pp. 1508 ◽  
Author(s):  
R Pavan Kumar Naidu ◽  
S Meikandasivam

In this paper, grid-connected photovoltaic (PV) system is presented. PV system consists of a photovoltaic module, a boost converter, and voltage source inverter. ANFIS based ICM (Incremental Conductance Method) MPPT (Maximum Power Point Tracking) controller is utilized to produce gate signal for DC-DC boost converter. This controller is used for optimizing the total performance of the Photovoltaic system in turn the errors were reduced in Voltage Source Inverter (VSI). The grid-connected PV system performance is evaluated and har-monics occurred in the system are decreased. The proposed methodology is implemented in MATLAB/Simulink. 


Sign in / Sign up

Export Citation Format

Share Document