scholarly journals Intensifications reactive power during of asymmetric network outages in dual-stator winding generators

Author(s):  
Qasim Al Azze ◽  
Balasim М. Hussein ◽  
Hayder Salim Hameed

<span lang="EN-US">The paper proposes a protection to dual stator generator, reluctance rotor, from asymmetrical fault. Which prevents the dual stator generator, reluctance rotor, from electrical sage through working process in order to avoid any interruption in the generator-grid connection. The procedure consummated with injecting suitable reactive power during the fault period. The proposed method that makes it possible for wind turbine application via dual stator winding generators (DSWRG) synchronous mod to stay connected to the grid during asymmetrical faults. It has been built according to trusted simulating mode considering all tested parameters according to experiment work. The expirment, consider the DC link side stability and care about the behavior and performance of machine side parameter. As well the machineability is evaluated to ride through asymmetrical fault by observing the secondary side current which has a big role in saving grid side converter. The control takes a response within 200 ms after fault trigger recognition. The generator ability of dynamically remaining connected stable and existing in the network, which is sustained a series voltage disturbance by injecting appropriate amount of reactive power. The main interest required in this paper is the capability of a machine to overcome the asymmetrical fault.</span>

2021 ◽  
Vol 23 (1) ◽  
pp. 1-7
Author(s):  
Dekali Zouheyr ◽  
Baghli Lotfi ◽  
Lubin Thierry ◽  
Boumediene Abdelmadjid

This paper describes the real time implementation and control of a wind energy conversion chain emulator based on a synchronous generator (SG) using a full-scale power converter configuration. The proposed structure consists of the mechanical coupling of two 1.5 kW machines, a DC motor which emulates the static-dynamic behaviors of a three-blade wind turbine with a horizontal axis including an ideal gearbox, and a synchronous generator that ensures the electromechanical conversion and manages the different operating modes. The aim of the first part in this work is the design and the implementation of the control of the grid side converter in order to control the flow of the produced/consumed active and reactive power (PGSC / QGSC) in both directions between the generator and the grid. An improved experimental grid voltage vector-orientation control algorithm (VOC) is investigated and applied to the grid inverter to control the GSC powers independently and instantly. The control algorithms are implanted in C, using dSPACE DS1104 control board to drive the 6-IGBT’s inverter. The experimental results validate the effectiveness of the proposed control scheme of the GSC.


A doubly-fed induction generator (DFIG) applied to wind power generation driven by wind turbine is under study for low voltage ride-through application during system unbalance. Use of DFIG in wind turbine is widely spreading due to its control over DC voltage and active and reactive power. Conventional dq axis current control using voltage source converters for both the grid side and the rotor side of the DFIG are analyzed and simulated. An improved control and operation of DFIG system under unbalanced grid voltage conditions by coordinating the control of both the rotor side converter (RSC) and the grid side converter (GSC) is done in this thesis. Simulation and analysis of DFIG system with wind turbine using Fuzzy logic controller for RSC and GSC under unbalanced condition is presented in the positive synchronous reference frame. The common DC-link voltage is controlled by grid side converter and control of DFIG’s stator output active and reactive power is controlled by rotor side converter. The steady-state operation of the DFIG and its dynamic response to voltage sag resulting from a remote fault on the 120-kV system is shown in this thesis using controllers. Modeling of DFIG system under Fuzzy logic controller to control voltage and active-reactive powers is done using MATLAB/SIMULINK.


2019 ◽  
Vol 2019 ◽  
pp. 1-9 ◽  
Author(s):  
Guangchen Liu ◽  
Jianwen Hu ◽  
Guizhen Tian ◽  
Lie Xu ◽  
Shengtie Wang

Regarding PMSG-based wind turbine generation system, this paper proposes a supercapacitor energy storage unit (SCESU) which is connected in parallel with the DC-link of the back-to-back converter to enhance its high voltage ride through performance. The analysis of the operation and control for the grid-side converter and SCESU are conducted. Based on real time digital simulators (RTDS), a model and a Hardware-in-the-Loop (HiL) platform of PMSG-based wind turbine with SCESU is developed, and the simulation results show that the SCESU absorbs the imbalanced energy and the grid-side converter absorbs inductive reactive power during the period of voltage swell and verify the correctness and feasibility of the high voltage ride through control strategy.


2016 ◽  
Vol 65 (4) ◽  
pp. 643-656 ◽  
Author(s):  
Piotr Gajewski ◽  
Krzysztof Pieńkowski

Abstract The paper presents the advanced control system of the wind energy conversion with a variable speed wind turbine. The considered system consists of a wind turbine with the permanent magnet synchronous generator (PMSG), machine side converter (MSC), grid side converter (GSC) and control circuits. The mathematical models of a wind turbine system, the PMSG generator and converters have been described. The control algorithms of the converter systems based on the methods of vector control have been applied. In the advanced control system of the machine side converter the optimal MPPT control method has been used. Additionally the pitch control scheme is included in order to achieve the limitation of maximum power and to prevent mechanical damage of the wind turbine. In the control system of the grid side converter the control of active and reactive power has been applied with the application of Voltage Oriented Control (VOC). The performance of the considered wind energy system has been studied by digital simulation. The results of simulation studies confirmed the good effectiveness of the considered wind turbine system and very good performance of the proposed methods of vector control and control systems.


2021 ◽  
Vol 233 ◽  
pp. 01025
Author(s):  
Yingfeng Zhu ◽  
Xiaosu Xie ◽  
Dong Yang ◽  
Song Gao ◽  
Weichao Zhang ◽  
...  

Doubly fed induction generator (DFIG) wind power generation system is widely used in wind farm all over the world. Reactive power can be generated both in grid-side converter and generator-side converter of DFIG. In this paper, working principle and control method of DFIG are introduced, and the reactive power limit of DFIG is derived, finally reactive power regulation is simulated in Simulink.


2013 ◽  
Vol 373-375 ◽  
pp. 1287-1293
Author(s):  
Jian Wei Liang ◽  
Tao Wang

The paper is based on PSCAD/EMTDC. The basic structure and operation principle of DFIG are analyzed and the mathematical model of DFIG is established, based on which the control system of rotor-side and grid-side converters is set up. The stator flux-oriented vector control is adopted for rotor-side converter. The no-load grid connection is realized before cutting in and control strategy is switched after grid connection successfully. DFIG can meet grid connection condition quickly with the control strategy and is connected to grid with no current shock nearly. The output of active and reactive power can be regulated respectively.


Sign in / Sign up

Export Citation Format

Share Document