Fuzzy Logic Controller Based Bridgeless Isolated Interleaved Zeta Converter for LED Lamp Driver Application

Author(s):  
Thenmozhi R ◽  
Sharmeela C ◽  
Natarajan P ◽  
Velraj R

In recent times, High-Brightness Light Emitting Diodes (HB-LEDs) are developing rapidly and it is confirmed to be the future development in lighting not only because of their high efficiency and high reliability, however also because of their other exceptional features: chromatic variety, shock and vibration resistance, etc. In this paper, a Bridgeless (BL) Isolated Interleaved Zeta Converter is proposed for the purpose of reducing the diode failures or losses, the value of output ripples also gets decreased. The proposed BL isolated interleaved zeta converter operating in Discontinuous Conduction Mode (DCM) is used for controlling the brightness of LED Driver with inherent PFC at ac mains using single voltage sensor. The fuzzy logic controller (FLC) is used to adjust the Modulation Index of the voltage controller in order to improve the dynamic response of LED Lamp driver. Based on the error of converter output voltage, FLC is designed to select the optimum Modulation Index of the voltage controller. The proposed LED driver is simulated to achieve a unity power factor at ac mains for a wide range of voltage control and supply voltage fluctuations.

Author(s):  
Rizky Fatur Rochman ◽  
Eka Prasetyono ◽  
Rachma Prilian Eviningsih

The use of lighting loads is one of the crucial matters which increases every year. The increasing use then leads to the development of brighter and longer-lasting sources. In addition, the conventional use of lighting loads today, which only emit light at its maximum intensity, does not allow the consumers to adjust the brightness level as needed. Consequently, this condition may cause energy wastage. The LED lighting system is gaining popularity as it is widely used in a wide range of applications. The advantages of LEDs, such as its compact size and varied lamp colors, replace conventional lighting sources. The linear setting of the driver topology using the flyback converter was aimed to control the LEDs with a constant current in order to adjust the variation of the LED light intensity. The closed-loop driver circuit with flyback converter topology was designed as an LED driver with a given load specification from the LED string. A dimmable feature was included for adjusting the intensity of the light produced by the LEDs. Eventually, the fuzzy logic controller (FLC) method was applied to the integrated change setting to obtain a dynamic response.


Author(s):  
M.Z. Ismail ◽  
M.H.N. Talib ◽  
Z. Ibrahim ◽  
J. Mat Lazi ◽  
Z. Rasin

<span>Fuzzy logic controller (FLC) has shown excellent performance in dealing with the non-linearity and complex dynamic model of the induction motor. However, a conventional constant parameter FLC (CPFL) will not be able to provide–good coverage performance for a wide speed range operation with a single tuning parameter. Therefore, this paper proposed a self tuning mechanism FLC approach by model reference adaptive controller (ST-MRAC) to continuously allow to adjust the parameters. Due to real time hardware application, the dominant rules selection method for simplified rules has been implemented as part of the reducing computational burden. Experiment results validate a good performance of the ST-MRAC compared to the CPFL for the   speed performance in terms of the wide range of operations and disturbance showed remarkable performance.</span>


2018 ◽  
Vol 18 (9) ◽  
pp. 5893-5898
Author(s):  
Joon-Sung Kwon ◽  
Ji-Young Beak ◽  
Nam-Woo Kang ◽  
Minki Hong ◽  
Changjin Lim ◽  
...  

2017 ◽  
Vol 7 (1.2) ◽  
pp. 186 ◽  
Author(s):  
S. Muthu Balaji ◽  
R. Anand ◽  
P. Senthil Pandian

High voltage gain dc-dc converters plays an major role in many modern industrialized applications like PV and fuel cells, electrical vehicles, dc backup systems (UPS, inverter), HID (high intensity discharge) lamps. As usual boost converter experiences a drawback of obtaining a high voltage at maximum duty cycle. Hence in order to increase the voltage gain of boost converter, this paper discusses about the advanced boost converter using solar power application. By using this technique, boost converter attains a high voltage which is ten times greater than the input supply voltage. The output voltage can be further increased to more than ten times the supply voltage by using a parallel capacitor and a coupled inductor. The voltage stress across the switch can be reduced due to high output voltage. The Converter is initially operated in open loop and then it is connected with closed loop. More over the fuzzy logic controller is used for the ripple reduction.


2011 ◽  
Vol 301-303 ◽  
pp. 121-126
Author(s):  
Qiang Fan ◽  
Xian Song Fu ◽  
Yi Li Liu ◽  
Ping Juan Niu ◽  
Tie Cheng Gao

High power LED is a kind of ideal green lighting source, which owns longer life, higher efficiency and lower electricity power consumption than incandescent lamps and fluorescent bulbs. Constant current driver is the most key factor for high power LED’s premium properties. Based on the specific chip LM3478, a novel Boost DC/DC converting circuit to drive LED was proposed. The whole circuit structure was simple, and owned high reliability with over current protection. The circuit operates continuous current mode (CCM), with normal supply voltage 12V. The constant output current is 700mA, which can drive two-row LED series, 5 LEDs at least each series. The test results show that the electricity efficiency is up to 93.20% and that the output current deviation is 7.71%. The operating temperature range is -40~+125°C.


2004 ◽  
Vol 1 (1) ◽  
pp. 18-20 ◽  
Author(s):  
Mark C. Williams ◽  
Bruce R. Utz ◽  
Kevin M. Moore

The U.S. Department of Energy’s (DOE) Office of Fossil Energy’s (FE) National Energy Technology Laboratory (NETL), in partnership with private industries, is leading the development and demonstration of high efficiency solid oxide fuel cells (SOFCs) and fuel cell turbine hybrid power generation systems for near term distributed generation (DG) markets with an emphasis on premium power and high reliability. NETL is partnering with Pacific Northwest National Laboratory (PNNL) in developing new directions in research under the Solid-State Energy Conversion Alliance (SECA) initiative for the development and commercialization of modular, low cost, and fuel flexible SOFC systems. The SECA initiative, through advanced materials, processing and system integration research and development, will bring the fuel cell cost to $400 per kilowatt (kW) for stationary and auxiliary power unit (APU) markets. The President of the U.S. has launched us into a new hydrogen economy. The logic of a hydrogen economy is compelling. The movement to a hydrogen economy will accomplish several strategic goals. The U.S. can use its own domestic resources—solar, wind, hydro, and coal. The U.S. uses 20 percent of the world’s oil but has only 3 percent of resources. Also, the U.S. can reduce green house gas emissions. Clear Skies and Climate Change initiatives aim to reduce carbon dioxide (CO2), nitrogen oxides (NOx), and sulfur dioxide (SO2) emissions. SOFCs have no emissions, so they figure significantly in these DOE strategies. In addition, DG—SOFCs, reforming, energy storage—has significant benefit for enhanced security and reliability. The use of fuel cells in cars is expected to bring about the hydrogen economy. However, commercialization of fuel cells is expected to proceed first through portable and stationary applications. This logic says to develop SOFCs for a wide range of stationary and APU applications, initially for conventional fuels, then switch to hydrogen. Like all fuel cells, the SOFC will operate even better on hydrogen than conventional fuels. The SOFC hybrid is a key part of the FutureGen plants. FutureGen is a major new Presidential initiative to produce hydrogen from coal. The highly efficient SOFC hybrid plant will produce electric power and other parts of the plant could produce hydrogen and sequester CO2. The hydrogen produced can be used in fuel cell cars and for SOFC DG applications.


2012 ◽  
Vol 588-589 ◽  
pp. 884-887
Author(s):  
Fei Xu ◽  
Le Nian He

A high efficiency step-up White Light Emitting-diode (WLED) driver with PWM dimming is presented in this paper. An integrated current sensing technique is used to improve system efficiency. Meanwhile, a novel PWM(pulse width modulation) dimming scheme is proposed to achieve wide range dimming frequency, which can be adaptive to dimming frequency from 200Hz to 200 KHz. The proposed driver is designed with CSMC 0.5um 40V bipolar-CMOS-DMOS process. Simulation results verify the functionality of the design and high efficiency is realized, with a peak value of 94.12% at 5.5V-input and 200mA-load.


Author(s):  
Abdel- Latif Elshafei

To study the aircraft response to a fast pull-up manoeuvre, a short period approximation of the longitudinal model is considered. The model is highly nonlinear and includes parametric uncertainties. To cope with a wide range of command signals, a robust adaptive fuzzy logic controller is proposed. The proposed controller adopts a dynamic inversion approach. Since feedback linearization is practically imperfect, robustifying and adaptive components are included in the control law to compensate for modeling errors and achieve acceptable tracking errors. Two fuzzy systems are implemented. The first system models the nominal values of the system’s nonlinearity. The second system is an adaptive one that compensates for modeling errors. The derivation of the control law based on a dynamic game approach is given in detail. Stability of the closed-loop control system is also verified. Simulation results based on an F16-model illustrate a successful tracking performance of the proposed controller.   


2021 ◽  
Vol 13 (18) ◽  
pp. 10216
Author(s):  
Youcef Belkhier ◽  
Nasim Ullah ◽  
Ahmad Aziz Al Alahmadi

Permanent magnet synchronous generator (PMSG) with a back-to-back power converter is one of the commonly used technologies in tidal power generation schemes. However, the nonlinear dynamics and time-varying parameters of this kind of conversion system make the controller computation a challenging task. In the present paper, a novel intelligent control method based on the passivity concept with a simple structure is proposed. This proposed strategy consists of passivity-based speed control (PBSC) combined with a fuzzy logic method to address the robustness problems faced by conventional control techniques such as proportional-integral (PI) control. The proposed method extracts the maximum power from the tidal energy, compensates for the uncertainty in a damped way where the entire dynamics of the PMSG are considered when designing the control law. The fuzzy logic controller is selected, which makes the proposed strategy intelligent to compute the damping gains to make the closed-loop passive and approximate the unstructured dynamics of the PMSG. Thus, the robustness property of the closed-loop system is considerably increased. The regulation of DC voltage and reactive power to their desired values are the principal objectives of the present work. The proposed method is used to control the machine-side converter (MSC), while a conventional PI method is adopted to control the grid-side converter (GSC). Dynamic simulations show that the DC voltage and reactive power errors are extremely reduced with the proposed strategy; ±0.002 for the DC-link voltage and ±0.000015 in the case of the reactive power. Moreover, the lowest steady-state error and better convergence criterion are shown by the proposed control (0.3 × 10−3 s). Generally, the proposed candidate offers high robustness, fast speed convergence, and high efficiency over the other benchmark nonlinear strategies. Moreover, the proposed controller was also validated in a processor in the loop (PIL) experiment using Texas Instruments (TI) Launchpad.


Author(s):  
Muhammad M. A. S. Mahmoud

This paper discusses domestic problem of waiting hot water for the shower use till it reaches satisfactory temperature, which result a lot of wastage in fresh water. The outcome from research survey shows that there is no satisfactory solution till now as all solutions were either expensive or with no effective results. Local small inline electric heater equipped with fuzzy logic controller is proposed in this paper to be installed just before the showerhead to measure the water temperature and flow before the showerhead, as control input-variables, and decide the operating voltage of the heater, as control output-variable. Matlab Simulink is used to model the proposed system. Different test cases are simulated to prove the performance and the safe operation of the system. Techno-economic study is carried out to determine the &ldquo;Direct Benefits&rdquo; and &ldquo;Indirect Benefits&rdquo; that can be achieved if such system is implemented in wide range. Azerbaijan data is taken as an example to calculate the economic benefits. The results show important benefits not only for economy but also for climate and the reduction of greenhouse gas emission. Different economic indices are provided to be an easy reference for decision makers and project managers.


Sign in / Sign up

Export Citation Format

Share Document