The role of bone morphogenetic proteins in articular cartilage development, homeostasis and repair

2007 ◽  
Vol 20 (03) ◽  
pp. 151-158 ◽  
Author(s):  
A. O. Oshin ◽  
M. C. Stewart

SummaryBone morphogenetic proteins (BMPs) are members of the TGF-β superfamily of secreted ligands. BMPs regulate a diverse range of developmental processes during embryogenesis and postnatal development, and control the differentiation of several musculoskeletal tissues including bone, cartilage, tendon and ligaments. The ability of BMPs to modulate the phenotype of cells in these tissue lineages suggests that these factors could be valuable for musculoskeletal tissue regeneration. In fact, BMPs-2 and -7 are already in clinical use for bone regeneration. This review addresses the signaling mechanisms by which BMPs regulate cellular processes, the role of BMPs in articular cartilage development and joint formation, and the data that supports the use of BMPs for in vitro phenotypic support of articular chondrocyte cultures, chondrogenic differentiation of mesenchymal stem cells (MSCs) and articular cartilage repair. Given the documented importance of BMP activity for normal joint formation, articular cartilage development and maintenance, the chondrogenic activity of BMPs when applied to MSC cultures and the encouraging outcomes of several in vivo cartilage repair studies, BMP therapies hold considerable promise for effective cartilage repair and/or regeneration. Future advances in the control of BMP elution from biocompatible matrices and prolonged, dose-controlled BMP expression by genetically engineered cells should substantially improve cartilage repair strategies using BMPs and similar chondro-protective proteins.

2002 ◽  
Vol 26 (3) ◽  
pp. 131-136 ◽  
Author(s):  
Pecina M. ◽  
Jelic M. ◽  
Martinovic S. ◽  
Haspl M. ◽  
Vukicevic S.

2021 ◽  
Vol 22 (11) ◽  
pp. 5828
Author(s):  
Kyoko Imanaka-Yoshida

Tenascin-C (TNC) is a large extracellular matrix (ECM) glycoprotein and an original member of the matricellular protein family. TNC is transiently expressed in the heart during embryonic development, but is rarely detected in normal adults; however, its expression is strongly up-regulated with inflammation. Although neither TNC-knockout nor -overexpressing mice show a distinct phenotype, disease models using genetically engineered mice combined with in vitro experiments have revealed multiple significant roles for TNC in responses to injury and myocardial repair, particularly in the regulation of inflammation. In most cases, TNC appears to deteriorate adverse ventricular remodeling by aggravating inflammation/fibrosis. Furthermore, accumulating clinical evidence has shown that high TNC levels predict adverse ventricular remodeling and a poor prognosis in patients with various heart diseases. Since the importance of inflammation has attracted attention in the pathophysiology of heart diseases, this review will focus on the roles of TNC in various types of inflammatory reactions, such as myocardial infarction, hypertensive fibrosis, myocarditis caused by viral infection or autoimmunity, and dilated cardiomyopathy. The utility of TNC as a biomarker for the stratification of myocardial disease conditions and the selection of appropriate therapies will also be discussed from a clinical viewpoint.


2018 ◽  
Vol 2018 ◽  
pp. 1-9 ◽  
Author(s):  
Mohammed Zayed ◽  
Steven Newby ◽  
Nabil Misk ◽  
Robert Donnell ◽  
Madhu Dhar

Horses are widely used as large animal preclinical models for cartilage repair studies, and hence, there is an interest in using equine synovial fluid-derived mesenchymal stem cells (SFMSCs) in research and clinical applications. Since, we have previously reported that similar to bone marrow-derived MSCs (BMMSCs), SFMSCs may also exhibit donor-to-donor variations in their stem cell properties; the current study was carried out as a proof-of-concept study, to compare the in vivo potential of equine BMMSCs and SFMSCs in articular cartilage repair. MSCs from these two sources were isolated from the same equine donor. In vitro analyses confirmed a significant increase in COMP expression in SFMSCs at day 14. The cells were then encapsulated in neutral agarose scaffold constructs and were implanted into two mm diameter full-thickness articular cartilage defect in trochlear grooves of the rat femur. MSCs were fluorescently labeled, and one week after treatment, the knee joints were evaluated for the presence of MSCs to the injured site and at 12 weeks were evaluated macroscopically, histologically, and then by immunofluorescence for healing of the defect. The macroscopic and histological evaluations showed better healing of the articular cartilage in the MSCs’ treated knee than in the control. Interestingly, SFMSC-treated knees showed a significantly higher Col II expression, suggesting the presence of hyaline cartilage in the healed defect. Data suggests that equine SFMSCs may be a viable option for treating osteochondral defects; however, their stem cell properties require prior testing before application.


Development ◽  
1958 ◽  
Vol 6 (2) ◽  
pp. 183-186
Author(s):  
G. Lelkes

It has been pointed out by Fell & Canti (1934) as a result of their experiments in vitro concerning the early formation of the avian limb skeleton and kneejoint, that the appearance of the articular rudiment is independent of the bloodand nerve-supply as well as of mechanical influences. These authors believe that the formation of articular surfaces occurs in consequence of the differential growth of the scleroblastema (the ‘Anlage’ of the limb skeleton, skeletal rudiment) the essential factor in joint formation being the association of undifferentiated tissue with the rapidly growing chondrification centres. They emphasize, however, that only the earlier stages of joint formation can be obtained in vitro, the conditions of cultivation are not adequate for the further development of the joints. The articular rudiment disappears by secondary fusion of the cartilages of the limb skeleton.


Life ◽  
2020 ◽  
Vol 10 (5) ◽  
pp. 58
Author(s):  
Aida Martinez-Sanchez ◽  
Stefano Lazzarano ◽  
Eshita Sharma ◽  
Helen Lockstone ◽  
Christopher L. Murphy

MicroRNAs (miRNAs) play key roles in cartilage development and homeostasis and are dysregulated in osteoarthritis. MiR-145 modulation induces profound changes in the human articular chondrocyte (HAC) phenotype, partially through direct repression of SOX9. Since miRNAs can simultaneously silence multiple targets, we aimed to identify the whole targetome of miR-145 in HACs, critical if miR-145 is to be considered a target for cartilage repair. We performed RIP-seq (RNA-immunoprecipitation and high-throughput sequencing) of miRISC (miRNA-induced silencing complex) in HACs overexpressing miR-145 to identify miR-145 direct targets and used cWords to assess enrichment of miR-145 seed matches in the identified targets. Further validations were performed by RT-qPCR, Western immunoblot, and luciferase assays. MiR-145 affects the expression of over 350 genes and directly targets more than 50 mRNAs through the 3′UTR or, more commonly, the coding region. MiR-145 targets DUSP6, involved in cartilage organization and development, at the translational level. DUSP6 depletion leads to MMP13 upregulation, suggesting a contribution towards the effect of miR-145 on MMP13 expression. In conclusion, miR-145 directly targets several genes involved in the expression of the extracellular matrix and inflammation in primary chondrocytes. Thus, we propose miR-145 as an important regulator of chondrocyte function and a new target for cartilage repair.


2020 ◽  
Vol 10 (1) ◽  
Author(s):  
Guillermo Bauza ◽  
Anna Pasto ◽  
Patrick Mcculloch ◽  
David Lintner ◽  
Ava Brozovich ◽  
...  

Abstract Cartilage repair in osteoarthritic patients remains a challenge. Identifying resident or donor stem/progenitor cell populations is crucial for augmenting the low intrinsic repair potential of hyaline cartilage. Furthermore, mediating the interaction between these cells and the local immunogenic environment is thought to be critical for long term repair and regeneration. In this study we propose articular cartilage progenitor/stem cells (CPSC) as a valid alternative to bone marrow-derived mesenchymal stem cells (BMMSC) for cartilage repair strategies after trauma. Similar to BMMSC, CPSC isolated from osteoarthritic patients express stem cell markers and have chondrogenic, osteogenic, and adipogenic differentiation ability. In an in vitro 2D setting, CPSC show higher expression of SPP1 and LEP, markers of osteogenic and adipogenic differentiation, respectively. CPSC also display a higher commitment toward chondrogenesis as demonstrated by a higher expression of ACAN. BMMSC and CPSC were cultured in vitro using a previously established collagen-chondroitin sulfate 3D scaffold. The scaffold mimics the cartilage niche, allowing both cell populations to maintain their stem cell features and improve their immunosuppressive potential, demonstrated by the inhibition of activated PBMC proliferation in a co-culture setting. As a result, this study suggests articular cartilage derived-CPSC can be used as a novel tool for cellular and acellular regenerative medicine approaches for osteoarthritis (OA). In addition, the benefit of utilizing a biomimetic acellular scaffold as an advanced 3D culture system to more accurately mimic the physiological environment is demonstrated.


2005 ◽  
Vol 28 (2) ◽  
pp. 57-61
Author(s):  
Paola Narducci ◽  
Giovanna Baldini ◽  
Vittorio Grill ◽  
Vanessa Nicolin ◽  
Renato Bareggi ◽  
...  

2002 ◽  
Vol 70 (11) ◽  
pp. 5990-5996 ◽  
Author(s):  
Jutta Nesper ◽  
Stefan Schild ◽  
Crystal M. Lauriano ◽  
Anita Kraiss ◽  
Karl E. Klose ◽  
...  

ABSTRACT Since the first occurrence of O139 Vibrio cholerae as a cause of cholera epidemics, this serogroup has been investigated intensively, and it has been found that its pathogenicity is comparable to that of O1 El Tor strains. O139 isolates express a thin capsule, composed of a polymer of repeating units structurally identical to the lipopolysaccharide (LPS) O side chain. In this study, we investigated the role of LPS O side chain and capsular polysaccharide (CPS) in intestinal colonization by with genetically engineered mutants. We constructed CPS-negative, CPS/LPS O side chain-negative, and CPS-positive/LPS O side chain-negative mutants. Furthermore, we constructed two mutants with defects in LPS core oligosaccharide (OS) assembly. Loss of LPS O side chain or CPS resulted in a ≈30-fold reduction in colonization of the infant mouse small intestine, indicating that the presence of both LPS O side chain and CPS is important during the colonization process. The strain lacking both CPS and LPS O side chain and a CPS-positive, LPS O side chain-negative core OS mutant were both essentially unable to colonize. To characterize the role of surface polysaccharides in survival in the host intestine, resistance to several antimicrobial substances was investigated in vitro. These investigations revealed that the presence of CPS protects the cell against attack of the complement system and that an intact core OS is necessary for survival in the presence of bile.


Sign in / Sign up

Export Citation Format

Share Document