scholarly journals Peculiarities of dynamics indicators of endogenous intoxication in acute lung injury induced by hydrochloric acid

Author(s):  
O. O. Kostina ◽  
A. A. Hudyma

In experimental studies on rats we found out that in acute lung injury rates there is increasing an endogenous intoxication – content serum fractions of average molecular weight within 48 hours of observation and erythrocytic index of intoxication for 24 hours followed by 72 hours of decrease in the experiment.

1970 ◽  
Vol 43 (4) ◽  
pp. 689-710 ◽  
Author(s):  
R. W. Paterson ◽  
F. H. Abernathy

Experimental studies of drag reduction and polymer degradation in turbulent pipe flow with dilute water solutions of unfractionated polyethylene oxide are described. Drag reduction results indicate that the magnitude of the reduction cannot be correlated on the basis of weight average molecular weight, rather the phenomenon depends strongly on the concentration of the highest molecular weight species present in the molecular weight distribution. Polymer degradation in turbulent flow is found to be severe for high molecular weight polymers causing appreciable changes in drag reduction and molecular weight with the duration of flow. Data indicates that drag reduction exists in the limit of infinite dilution suggesting that the phenomenon is due to the interaction of individual polymer molecules with the surrounding solvent and that the extent of reduction is relatively independent of pipe diameter when a comparison is carried out at equal solvent wall shear stresses. Consideration of the high viscosity obtained with solutions in an irrotational laminar flow field suggests this is due to polymer molecule deformation and that this phenomenon is central to the mechanism of turbulent flow drag reduction.


2002 ◽  
Vol 82 (2) ◽  
pp. 133-145 ◽  
Author(s):  
Andry Van de Louw ◽  
Daniel Jean ◽  
Eric Frisdal ◽  
Charles Cerf ◽  
Marie-Pia d'Ortho ◽  
...  

Author(s):  
V. O. Beskyy ◽  
Z. M. Nebesna ◽  
M. I. Marushchak ◽  
L. A. Hryshchuk

Submicroscopic studies of the respiratory part of the lungs after 2 and 6 hours after the experimental acute lung injury with hydrochloric acid established adaptive-compensatory and destructive changes in the components of the air-blood barrier.The aim of the study – to learn submicroscopic changes in the components of the air-blood barrier of the lungs in the early period after acute lung injury.Materials and Methods. The experiments were carried out on 30 white mature non-linear male rats weighing 200–220 g. The animals were divided into 3 groups: 1 – control group, 2 – hydrochloric acid damage after 2 hours, 3 – hydrochloric acid damage after 6 hour.Results and Discussion. In an experiment on mature white rats, a study was made of the submicroscopic state of the components of the air-blood barrier in the early periods after acute lung injury. It has been established that adaptive-compensatory and initial destructive changes of the alveolar epithelium and the walls of the hemocapillary take place at 2 o'clock in the experiment. The cytoplasm of respiratory epitheliocytes during this period of the experiment was focal-edematous and enlightened, organelles were destructively altered. For alveolocytes of type I, there was a significant swelling and clarification of the cytoplasm. During this period of the experiment, an increased number of actively phagocytizing macrophages appeared, which acquired a rounded shape, clearly contoured membranes of the cariolema, their invaginations were determined, and in the karyoplasm euchromatin predominated. In alveolocytes of type II, after 6 hours, the progression of destructive changes was established. For which there were peculiarity hypertrophied nuclei with deep invagination of the cariolema, in which there were few nuclear pores, locally expanded perinuclear space. In the edematous cytoplasm, organelles were found to be destructively altered.Conclusions. Acute damage to the lungs leads to a disruption of the ultrastructural organization of the air-blood barrier. Established adaptive-compensatory processes and signs of destructive changes in the alveolar epithelium and the walls of hemocapillaries, which leads to deterioration of gas-exchange processes in the lungs.


Nanomedicine ◽  
2020 ◽  
Vol 15 (27) ◽  
pp. 2647-2654
Author(s):  
Keisuke Yoshida ◽  
Yukihiro Ikegami ◽  
Shinju Obara ◽  
Keiko Sato ◽  
Masahiro Murakawa

Aim: To investigate the anti-inflammatory effect of oxygen nanobubbles (ONBs) in an acute lung injury rat model. Materials & methods: In a rat hydrochloric acid lung injury model, ONB fluid was administered intravenously in the ONB group (n = 6) and normal saline was administered in the control group (n = 6). 4 h later, arterial partial pressure of oxygen (PaO2), mean arterial pressure and plasma inflammatory cytokines were measured. Results: There were no significant differences in the PaO2, mean arterial pressure or TNF-α and IL-6 levels between the two groups. Conclusions: No anti-inflammatory effect could be confirmed at the present ONB dose in the rat model of acute lung injury.


Gene ◽  
2015 ◽  
Vol 557 (1) ◽  
pp. 88-91 ◽  
Author(s):  
Fangyu Ning ◽  
Xiaozhi Wang ◽  
Li Shang ◽  
Tao Wang ◽  
Changjun Lv ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document