Osteoconductivity of Biphasic Calcium Phosphate Ceramic Improves New Bone Formation: A Histologic, Histomorphometric, Gene Expression, and Microcomputed Tomography Study

2020 ◽  
Vol 35 (1) ◽  
pp. 70-78
Author(s):  
Lucas Uetanabaro ◽  
Marcela Claudino ◽  
Rafael Mobile ◽  
João Zielak ◽  
Gustavo Garlet ◽  
...  
2005 ◽  
Vol 284-286 ◽  
pp. 285-288
Author(s):  
Oliver Malard ◽  
Jean Michel Bouler ◽  
Jerome Guicheux ◽  
Olivier Gauthier ◽  
E. Lerouxel ◽  
...  

Bone invasion is common in case of Squamous Cell Carcinomas (SCC) of the upper aero-digestive tract. Radiotherapy is required in addition to large surgical tumor removal. This treatment usually generates irreversible injuries on the reparation properties of the tissues, especially on bone. The quality of life of patients undergoing major surgery and radiotherapy in maxillary and mandible areas is reduced, but could be improved by bone reconstruction. The aim of this study was to evaluate the bone reconstruction possibilities by Macroporous Biphasic Calcium-Phosphate (MBCPÔ). The MBCP substitute was evaluated as granules and associated to autologous bone marrow (BM) graft in irradiated areas, in an inbreeding rodent model. Radiation sequels were created on inferior members of half of the rats. 3 weeks later, 3-mm osseous defects were created on each animal. The inbreeding model allows BM to be grafted without graft-versus-host reaction. Defects were filled either with MBCP alone, BM alone or a mixture of MBCP and BM. Six weeks after implantation, animals were sacrificed: bone repair and ceramic degradation were evaluated by qualitative and quantitative study. Results showed that bioceramics were well osteointegrated. Filling the defects with BM alone showed a significant increased of newly-formed bone formation but only after irradiation, whereas filling defects with MBCP alone increased new-bone formation only without previous irradiation. Associating MBCP to BM provided the best new-bone formation rates after irradiation. Degradation of the ceramic was the most important in case of BM grafting. This study demonstrated that BM added to MBCP constitute an appropriate material to be considered in case of bone defect occurring in irradiated tissue, and could be foreseen for use after bone removal for oncologic obligations.


2021 ◽  
Vol 22 (7) ◽  
pp. 3588
Author(s):  
Franciska Oberdiek ◽  
Carlos Ivan Vargas ◽  
Patrick Rider ◽  
Milijana Batinic ◽  
Oliver Görke ◽  
...  

(1) Background: The aim of this study was examining the ex vivo and in vivo properties of a composite made from polycaprolactone (PCL) and biphasic calcium phosphate (BCP) (synprint, ScientiFY GmbH) fabricated via fused deposition modelling (FDM); (2) Methods: Scaffolds were tested ex vivo for their mechanical properties using porous and solid designs. Subcutaneous implantation model analyzed the biocompatibility of PCL + BCP and PCL scaffolds. Calvaria implantation model analyzed the osteoconductive properties of PCL and PCL + BCP scaffolds compared to BCP as control group. Established histological, histopathological and histomorphometrical methods were performed to evaluate new bone formation.; (3) Results Mechanical testing demonstrated no significant differences between PCL and PCL + BCP for both designs. Similar biocompatibility was observed subcutaneously for PCL and PCL + BCP scaffolds. In the calvaria model, new bone formation was observed for all groups with largest new bone formation in the BCP group, followed by the PCL + BCP group, and the PCL group. This finding was influenced by the initial volume of biomaterial implanted and remaining volume after 90 days. All materials showed osteoconductive properties and PCL + BCP tailored the tissue responses towards higher cellular biodegradability. Moreover, this material combination led to a reduced swelling in PCL + BCP; (4) Conclusions: Altogether, the results show that the newly developed composite is biocompatible and leads to successful osteoconductive bone regeneration. The new biomaterial combines the structural stability provided by PCL with bioactive characteristics of BCP-based BSM. 3D-printed BSM provides an integration behavior in accordance with the concept of guided bone regeneration (GBR) by directing new bone growth for proper function and restoration.


2019 ◽  
Vol 10 (1) ◽  
pp. 7 ◽  
Author(s):  
Igor Puttini ◽  
Pier Poli ◽  
Carlo Maiorana ◽  
Igor Vasconcelos ◽  
Luis Schmidt ◽  
...  

(1) Background: Evaluate the osteoconduction capability of a biphasic calcium phosphate (BCP) ceramic composed of hydroxyapatite and β-tricalcium phosphate 60%/40% in a rat model. (2) Methods: In the calvarial bone of 54 adult male rats, 7-mm diameter critical size defects were performed. The animals were randomly allocated to three experimental groups according to the type of material: blood clot (BCG), blood clot covered with a bovine-derived collagen membrane (MBCG), and BCP ceramic covered with a bovine-derived collagen membrane (BCPG). In each group, 6 animals were euthanatized at post-operative days 7, 30, and 60 for histological and histometric analysis. (3) Results: The qualitative analysis revealed the persistence of the collagen membrane at seven days, with no relevant newly bone formation in all groups. At 30 days, centripetal bone formation was observed residual particles of the biomaterial surrounded by fibroblasts noted in the BCPG. At 60 days, while BCG and MBCG showed a partial maturation with the central part of the defect populated by a fibrous connective tissue, in the BCPG the critical area was entirely occupied by newly formed bone. In the intra groups analysis was noted a significant increase in new bone formation during the experimental period (p < 0.05). At 60 days, BCPG showed a higher percentage area of new bone formation (p < 0.05). (4) Conclusion: BCP promoted a new bone formation by osteoconduction and might be considered a valid alternative in bone regeneration procedures.


2008 ◽  
Vol 38 (Suppl) ◽  
pp. 355 ◽  
Author(s):  
Joon-Il Kim ◽  
Jeong-Ho Yun ◽  
Gyung-Joon Chae ◽  
Sung-Won Jung ◽  
Chang-Sung Kim ◽  
...  

Biomaterials ◽  
2006 ◽  
Vol 27 (15) ◽  
pp. 2934-2943 ◽  
Author(s):  
Gilles Bluteau ◽  
Paul Pilet ◽  
Xavier Bourges ◽  
Melitta Bilban ◽  
Reiner Spaethe ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document