Abstract 673: KLF10 is a Critical Mediator of Wnt Signaling in Aortic Valve Interstitial Cells

2014 ◽  
Vol 34 (suppl_1) ◽  
Author(s):  
Nalini M Rajamannan ◽  
Muzaffer Cicek ◽  
John Hawse ◽  
Thomas Spelsberg ◽  
Malayannan Subramaniam

We have previously demonstrated that β-catenin plays important roles in valve calcification with a specific osteogenic phenotype defined by increased bone mineral content and overall valve thickening. Recent studies indicate that KLF10 may be involved in mediating the Wnt signaling pathway in bone, which is known to play critical roles in osteoblast differentiation and mineralization. Therefore, we sought to test the role of KLF10 in mediating Wnt signaling, as well as differentiation and mineralization, in valve interstitial cells (VICs) isolated from porcine valves. Exposure of VICs to differentiation media led to increased expression of Runx2, Sox9 and osteocalcin. Differentiated cells also stained positive with Von Kossa while undifferentiated cells stained negative confirming the induction of an osteogenic phenotype. As expected, over-expression of both Lef1 and β-catenin led to activation of the top-flash reporter when transfected into VICs. Interestingly, over-expression of KLF10 also significantly up-regulated the top-flash reporter alone and further enhanced the activity of both Lef1 and β-catenin when co-transfected. We further confirmed the role of TIEG in an atherosclerotic mouse model ApoE/LRP5 double KO and found a two-fold increase in KLF10, Lrp6, and Runx2 expression in the cholesterol treated aortic valves as compared to controls. These data suggested that KLF10, Lef1 and β-catenin interact with each other to form a transcriptionally active protein complex leading to enhanced Wnt signaling in VICs. This possibility was further confirmed by the observation that KLF10 and β-catenin co-localize with one another in the nucleus of VICs following stimulation with LiCl and/or TGF-β. Taken together, these data implicate an important role for KLF10 in mediating Wnt signaling and Lef1 transcriptional activity in VICs, and implicate a potential role for canonical Wnt signaling in the observed osteogenic bone phenotype of cardiac aortic valves.

Biomedicines ◽  
2021 ◽  
Vol 9 (4) ◽  
pp. 427
Author(s):  
Enikő Balogh ◽  
Arpan Chowdhury ◽  
Haneen Ababneh ◽  
Dávid Máté Csiki ◽  
Andrea Tóth ◽  
...  

Calcific aortic valve stenosis (CAVS) is a heart disease characterized by the progressive fibro-calcific remodeling of the aortic valves, an actively regulated process with the involvement of the reactive oxygen species-mediated differentiation of valvular interstitial cells (VICs) into osteoblast-like cells. Nuclear factor erythroid 2-related factor 2 (Nrf2) regulates the expression of a variety of antioxidant genes, and plays a protective role in valve calcification. Heme oxygenase-1 (HO-1), an Nrf2-target gene, is upregulated in human calcified aortic valves. Therefore, we investigated the effect of Nrf2/HO-1 axis in VIC calcification. We induced osteogenic differentiation of human VICs with elevated phosphate and calcium-containing osteogenic medium (OM) in the presence of heme. Heme inhibited Ca deposition and OM-induced increase in alkaline phosphatase and osteocalcin (OCN) expression. Heme induced Nrf2 and HO-1 expression in VICs. Heme lost its anti-calcification potential when we blocked transcriptional activity Nrf2 or enzyme activity of HO-1. The heme catabolism products bilirubin, carbon monoxide, and iron, and also ferritin inhibited OM-induced Ca deposition and OCN expression in VICs. This study suggests that heme-mediated activation of the Nrf2/HO-1 pathway inhibits the calcification of VICs. The anti-calcification effect of heme is attributed to the end products of HO-1-catalyzed heme degradation and ferritin.


Author(s):  
Samoylova A.V. ◽  
Snimshchikova I.A. ◽  
Plotnikova M.O. ◽  
Yakushkina N.Y.

Alopecia is a common pathology among the active population, which leads not only to cosmetic defects, but also to the development of somatic diseases against the background of traumatic effects and chronic stress. The pathogenetic mechanisms of hair follicle formation are complex and diverse, since numerous factors, including the components of the Wnt signaling pathway, have an effect on its morphogenesis, the study of which is the subject of this study. The search for possible early markers of the development of alopecia led to interest in the study of the main morphogenic proteins of WNT - the signaling pathway (one of the intracellular signaling pathways, which control the development of blood vessels, as well as the growth and division of hair follicle cells) sclerostin and β-catenin among patients with androgenic and alopecia areata. The article presents data on the quantitative content of β-catenin and sclerostin in the blood serum in patients with androgenic and alopecia areata. Their possible pathways of complex interaction and influence on the morphogenesis of the hair follicle and the activity of the Wnt-signaling pathway have been analyzed, and the relationship between changes in the level of morphogenic proteins of the WNT-signaling pathway with sex and the course of the disease has been described. Establishment of the prognostic role of morphogenic proteins of the WNT signaling pathway in androgenic and alopecia areata will allow not only identify the personal risk of disease progression and to determine approaches to targeted therapy, but to develop and introduce updated diagnostic screening into dermatological practice.


2018 ◽  
Vol 48 (2) ◽  
pp. 419-432 ◽  
Author(s):  
Yuanyuan Zhao ◽  
Leilei Tao ◽  
Jun Yi ◽  
Haizhu Song ◽  
Longbang Chen

Radioresistance is a major obstacle in radiotherapy for cancer, and strategies are needed to overcome this problem. Currently, radiotherapy combined with targeted therapy such as inhibitors of phosphoinosotide 3-kinase/Akt and epidermal growth factor receptor signaling have become the focus of studies on radiosensitization. Apart from these two signaling pathways, which promote radioresistance, deregulation of Wnt signaling is also associated with the radioresistance of multiple cancers. Wnts, as important messengers in the tumor microenvironment, are involved in cancer progression mainly via canonical Wnt signaling. Their role in promoting DNA damage repair and inhibiting apoptosis facilitates cancer resistance to radiation. Thus, it seems reasonable to target Wnt signaling as a method for overcoming radioresistance. Many small-molecule inhibitors that target the Wnt signaling pathway have been identified and shown to promote radiosensitization. Therefore, a Wnt signaling inhibitor may help to overcome radioresistance in cancer therapy.


Author(s):  
Karlijn van Loon ◽  
Elisabeth J. M. Huijbers ◽  
Arjan W. Griffioen

Abstract Secreted frizzled-related proteins (SFRP) are glycoproteins containing a so-called frizzled-like cysteine-rich domain. This domain enables them to bind to Wnt ligands or frizzled (FzD) receptors, making potent regulators of Wnt signaling. As Wnt signaling is often altered in cancer, it is not surprising that Wnt regulators such as SFRP proteins are often differentially expressed in the tumor microenvironment, both in a metastatic and non-metastatic setting. Indeed, SFRP2 is shown to be specifically upregulated in the tumor vasculature of several types of cancer. Several studies investigated the functional role of SFRP2 in the tumor vasculature, showing that SFRP2 binds to FzD receptors on the surface of tumor endothelial cells. This activates downstream Wnt signaling and which is, thereby, stimulating angiogenesis. Interestingly, not the well-known canonical Wnt signaling pathway, but the noncanonical Wnt/Ca2+ pathway seems to be a key player in this event. In tumor models, the pro-angiogenic effect of SFRP2 could be counteracted by antibodies targeting SFRP2, without the occurrence of toxicity. Since tumor angiogenesis is an important process in tumorigenesis and metastasis formation, specific tumor endothelial markers such as SFRP2 show great promise as targets for anti-cancer therapies. This review discusses the role of SFRP2 in noncanonical Wnt signaling and tumor angiogenesis, and highlights its potential as anti-angiogenic therapeutic target in cancer.


2019 ◽  
Vol 98 ◽  
pp. 246-255 ◽  
Author(s):  
Chu-Chih Hung ◽  
Amy Chaya ◽  
Kai Liu ◽  
Konstantinos Verdelis ◽  
Charles Sfeir

Sign in / Sign up

Export Citation Format

Share Document