Abstract 2672: Serial in vivo Non-invasive Imaging of Intramyocardially Injected Autologous Mesenchymal Stem Cells, Modified for Transgene Expression of Positron-Emission Tomography (PET) Reporter in Porcine Myocardial Infarction

Circulation ◽  
2007 ◽  
Vol 116 (suppl_16) ◽  
Author(s):  
Mariann Gyongyosi ◽  
Jeronimo Blanco ◽  
Terez Marian ◽  
Ors Petnehazy ◽  
Rayyan Hemetsberger ◽  
...  

Objective. The aim of our study was to elaborate an in vivo tracking method of the intramyocardially injected msenchymal stem cells (MSCs), modified for transgene expression of trifusion protein (lentiviral vector, expressing renilla luciferase /RL/, red fluoroscein protein /RFP/ and herpes simplex truncated thymidine kinase /tTK, positron emmission tomography PET-reporter gene/) using serial PET imaging in pig myocardial infarction (MI). Methods. Bone marrow (100 ml) was harvested from pigs immediately before induction of MI by percutaneous balloon occlusion of the LAD followed by reperfusion. The MSCs were selected and cultivated. The lentiviral vector LV-RL-RFP-tTK was inoculated into the MSCs under control of CMV promoter. The cells with the highest fluorescence intensity (after achieving appr. 50% transfection efficacy) were sorted, and tracked in vitro by PET using 9-(4-[18F]fluoro-3-hydroxymethylbutyl)-guanine (18FHBG). The transfected MSCs (at least 3 mio MSCs/ pigs) were then injected direct intramyocardially using NOGA electromagnetic guidance in pigs in 10 locations of the infarct border zone (min. 0.3 million cells/injection), followed by PET imaging 30 hours and 7 days later, after intravenous injection of 5 mCi 18FHBG. Results. The in vitro 18FHBG uptakes of the transgene modified MSCs by PET were 10 times larger than the control JY human B-lymphoblasts and T lymphocytes. The minimum number of the cells detectable with PET was 0.2 million. MRI of the pigs revealed a mean global EF of 47+/-3.5%. PET imaging displayed diffuse distribution of the injected MSCs with high activity of the PET tracer in the anterior wall and septum at 30h, and less tracer activity in the injections sites with diffuse distribution in the pericardium and pleura indicating the wandering of the living cells at 7 days. PET imaging did not show 18FHBG accumulation in the infarcted heart of the control animals. Myocardial histology with RL and RFP staining confirmed the distribution of the injected MSCs through an elongated track around the injected area, 9 days after delivery. Conclusion. In vivo tracking of gene-modified porcine MSCs by PET imaging is feasible and allows serial noninvasive imaging of homing and propagation of MSCs in pigs after MI.

2020 ◽  
Author(s):  
Lin Zuo ◽  
Duan-duan Li ◽  
Xiu-Xia Ma ◽  
Shan-Hui Shi ◽  
Ding-Chao Lü ◽  
...  

Abstract Background:Myocardial infarction (MI) is the leading cause of death in the world-wide population. With the improvement of clinical therapy, the mortality in acute MI cases has been significantly reduced. This study was to demonstrate that erythropoietin (EPO) is an effective supporter for Sca-1+ stem cells (SCs) and can promote the repair of myocardial infarction (MI) partially via way of enhancing Sca-1+ SCs activities. Methods: Darbepoetin alpha (a long-acting EPO analog, EPOanlg) (30 mg/kg) was injected into the border zone of MI in adult mice. Infarct size, cardiac remodeling and performance, cardiomyocytes apoptosis and regenerations and microvessels density were measured. Lin− Sca-1+ SCs were isolated from neonatal and adult mice hearts and were respectively used to identify the colony forming ability and the supporting effect of EPO on these Sca-1+ SCs. Results: Compared to MI alone, EPOanlg reduced the infarct percentage and cardiomyocyte apoptosis ratio and LV chamber dilatation, improved cardiac performance, increased the regenerated cardiomyocyte ratio in the border zone and the numbers of coronary microvessels, while without obvious adverse effects in vivo. In vitro, EPO increased the proliferation, migration and clone formation of Lin- Sca-1+ SCs likely via the EPO receptor and Stat5-p38MAPK signaling. Conclusions: EPO promotes Sca-1+ SCs activities and MI repair. The study enlightens the prospects of Sca-1+ SC supporters in the treatment of MI.


2020 ◽  
Author(s):  
Lin Zuo ◽  
Duan-duan Li ◽  
Xiu-Xia Ma ◽  
Shan-Hui Shi ◽  
Ding-Chao Lü ◽  
...  

Abstract Background:Myocardial infarction (MI) is the leading cause of death in the world-wide population. With the improvement of clinical therapy, the mortality in acute MI cases has been significantly reduced. This study was to demonstrate that erythropoietin (EPO) is an effective supporter for Sca-1+ stem cells (SCs) and can promote the repair of myocardial infarction (MI) partially via the way of enhancing Sca-1+ SCs activities. Methods: Darbepoetin alpha (a long-acting EPO analog, EPOanlg) (30 mg/kg) was injected into the border zone of MI in adult mice. Infarct size, cardiac remodeling and performance, cardiomyocytes apoptosis and regenerations and microvessels density were measured. Lin− Sca-1+ SCs were isolated from neonatal and adult mice hearts and were respectively used to identify the colony forming ability and the supporting effect of EPO on these Sca-1+ SCs. Results: Compared to MI alone, EPOanlg reduced the infarct percentage and cardiomyocyte apoptosis ratio and LV chamber dilatation, improved cardiac performance, increased the regenerated cardiomyocyte ratio in the border zone and the numbers of coronary microvessels, while without obvious adverse effects in vivo. In vitro, EPO increased the proliferation, migration and clone formation of Lin- Sca-1+ SCs likely via the EPO receptor and Stat5-p38MAPK signaling. Conclusions: EPO promotes Sca-1+ SCs activities and MI repair. The study enlightens the prospects of Sca-1+ SC supporters in the treatment of MI.


2021 ◽  
Vol 12 (6) ◽  
Author(s):  
HuiYa Li ◽  
DanQing Hu ◽  
Guilin Chen ◽  
DeDong Zheng ◽  
ShuMei Li ◽  
...  

AbstractBoth weak survival ability of stem cells and hostile microenvironment are dual dilemma for cell therapy. Adropin, a bioactive substance, has been demonstrated to be cytoprotective. We therefore hypothesized that adropin may produce dual protective effects on the therapeutic potential of stem cells in myocardial infarction by employing an adropin-based dual treatment of promoting stem cell survival in vitro and modifying microenvironment in vivo. In the current study, adropin (25 ng/ml) in vitro reduced hydrogen peroxide-induced apoptosis in rat bone marrow mesenchymal stem cells (MSCs) and improved MSCs survival with increased phosphorylation of Akt and extracellular regulated protein kinases (ERK) l/2. Adropin-induced cytoprotection was blocked by the inhibitors of Akt and ERK1/2. The left main coronary artery of rats was ligated for 3 or 28 days to induce myocardial infarction. Bromodeoxyuridine (BrdU)-labeled MSCs, which were in vitro pretreated with adropin, were in vivo intramyocardially injected after ischemia, following an intravenous injection of 0.2 mg/kg adropin (dual treatment). Compared with MSCs transplantation alone, the dual treatment with adropin reported a higher level of interleukin-10, a lower level of tumor necrosis factor-α and interleukin-1β in plasma at day 3, and higher left ventricular ejection fraction and expression of paracrine factors at day 28, with less myocardial fibrosis and higher capillary density, and produced more surviving BrdU-positive cells at day 3 and 28. In conclusion, our data evidence that adropin-based dual treatment may enhance the therapeutic potential of MSCs to repair myocardium through paracrine mechanism via the pro-survival pathways.


Gels ◽  
2021 ◽  
Vol 7 (4) ◽  
pp. 253
Author(s):  
Bhaumik Patel ◽  
Ravi Manne ◽  
Devang B. Patel ◽  
Shashank Gorityala ◽  
Arunkumar Palaniappan ◽  
...  

Cardiovascular diseases are a leading cause of mortality across the globe, and transplant surgeries are not always successful since it is not always possible to replace most of the damaged heart tissues, for example in myocardial infarction. Chitosan, a natural polysaccharide, is an important biomaterial for many biomedical and pharmaceutical industries. Based on the origin, degree of deacetylation, structure, and biological functions, chitosan has emerged for vital tissue engineering applications. Recent studies reported that chitosan coupled with innovative technologies helped to load or deliver drugs or stem cells to repair the damaged heart tissue not just in a myocardial infarction but even in other cardiac therapies. Herein, we outlined the latest advances in cardiac tissue engineering mediated by chitosan overcoming the barriers in cardiac diseases. We reviewed in vitro and in vivo data reported dealing with drug delivery systems, scaffolds, or carriers fabricated using chitosan for stem cell therapy essential in cardiac tissue engineering. This comprehensive review also summarizes the properties of chitosan as a biomaterial substrate having sufficient mechanical stability that can stimulate the native collagen fibril structure for differentiating pluripotent stem cells and mesenchymal stem cells into cardiomyocytes for cardiac tissue engineering.


2016 ◽  
Vol 119 (suppl_1) ◽  
Author(s):  
Liu Yang ◽  
Yang Yu ◽  
Baron Arnone ◽  
Chan Boriboun ◽  
Jiawei Shi ◽  
...  

Background: Long non-coding RNAs (lncRNAs) are an emerging class of RNAs with no or limited protein-coding capacity; a few of which have recently been shown to regulate critical biological processes. Myocardial infarction-associated transcript (MIAT) is a conserved mammalian lncRNA, and single nucleotide polymorphisms (SNPs) in 6 loci of this gene have been identified to be strongly associated with the incidence and severity of human myocardial infarction (MI). However, whether and how MIAT impacts on the pathogenesis of MI is unknown. Methods & Results: Quantitative RT-PCR analyses revealed that MIAT is expressed in neonatal mouse heart and to a lesser extent in adult heart. After surgical induction of MI in adult mice, MIAT starts to increase in 2 hours, peaks at 6 hours in atria and 12 hours in ventricles, and decreases to baseline at 24 hours. Fluorescent in situ hybridization (FISH) revealed a slight increase in the number of MIAT-expressing cells in the infarct border zone at 12 hours post-MI. Moreover, qRT-PCR analyses of isolated cardiac cells revealed that MIAT is predominantly expressed in cardiosphere-derived cardiac progenitor cells (CPCs). Treatment of CPCs with H 2 O 2 led to a marked upregulation of MIAT, while knockdown (KD) of MIAT resulted in a significantly impaired cell survival in vitro with H 2 O 2 treatment and in vivo after administered in the ischemic/reperfused heart. Notably, bioinformatics prediction and RNA immunoprecipitation identified FUS (fused in sarcoma) as a novel MIAT-interacting protein. FUS-KD CPCs displayed reduced cell viability and increased apoptosis under oxidative stress. Furthermore, MIAT overexpression enhanced survival of WT CPCs but not FUS-KD CPCs, suggesting that the protective role of MIAT is mediated by FUS. Conclusions: MIAT interacts with FUS to protect CPCs from oxidative stress-induced cell death.


Blood ◽  
2007 ◽  
Vol 110 (5) ◽  
pp. 1448-1457 ◽  
Author(s):  
Fang Zhang ◽  
Susannah I. Thornhill ◽  
Steven J. Howe ◽  
Meera Ulaganathan ◽  
Axel Schambach ◽  
...  

AbstractUbiquitously acting chromatin opening elements (UCOEs) consist of methylation-free CpG islands encompassing dual divergently transcribed promoters of housekeeping genes that have been shown to confer resistance to transcriptional silencing and to produce consistent and stable transgene expression in tissue culture systems. To develop improved strategies for hematopoietic cell gene therapy, we have assessed the potential of the novel human HNRPA2B1-CBX3 UCOE (A2UCOE) within the context of a self-inactivating (SIN) lentiviral vector. Unlike viral promoters, the enhancer-less A2UCOE gave rise to populations of cells that expressed a reporter transgene at a highly reproducible level. The efficiency of expression per vector genome was also markedly increased in vivo compared with vectors incorporating either spleen focus-forming virus (SFFV) or cytomegalovirus (CMV) promoters, suggesting a relative resistance to silencing. Furthermore, an A2UCOE-IL2RG vector fully restored the IL-2 signaling pathway within IL2RG-deficient human cells in vitro and successfully rescued the X-linked severe combined immunodeficiency (SCID-X1) phenotype in a mouse model of this disease. These data indicate that the A2UCOE displays highly reliable transcriptional activity within a lentiviral vector, largely overcoming insertion-site position effects and giving rise to therapeutically relevant levels of gene expression. These properties are achieved in the absence of classic enhancer activity and therefore may confer a high safety profile.


Stem Cells ◽  
2008 ◽  
Vol 26 (2) ◽  
pp. 525-533 ◽  
Author(s):  
Xiaofeng Xia ◽  
Melvin Ayala ◽  
Benjamin R. Thiede ◽  
Su-Chun Zhang

2011 ◽  
Vol 300 (6) ◽  
pp. H2238-H2250 ◽  
Author(s):  
Manuela Campan ◽  
Vincenzo Lionetti ◽  
Giovanni D. Aquaro ◽  
Francesca Forini ◽  
Marco Matteucci ◽  
...  

The methods currently utilized to track stem cells by cardiac MRI are affected by important limitations, and new solutions are needed. We tested human ferritin heavy chain (hFTH) as a reporter gene for in vivo tracking of stem cells by cardiac MRI. Swine cardiac stem/progenitor cells were transduced with a lentiviral vector to overexpress hFTH and cultured to obtain cardiospheres (Cs). Myocardial infarction was induced in rats, and, after 45 min, the animals were subjected to intramyocardial injection of ∼200 hFTH-Cs or nontransduced Cs or saline solution in the border zone. By employing clinical standard 1.5-Tesla MRI scanner and a multiecho T2* gradient echo sequence, we localized iron-accumulating tissue only in hearts treated with hFTH-Cs. This signal was detectable at 1 wk after infarction, and its size did not change significantly after 4 wk (6.33 ± 3.05 vs. 4.41 ± 4.38 mm2). Cs transduction did not affect their cardioreparative potential, as indicated by the significantly better preserved left ventricular global and regional function and the 36% reduction in infarct size in both groups that received Cs compared with control infarcts. Prussian blue staining confirmed the presence of differentiated, iron-accumulating cells containing mitochondria of porcine origin. Cs-derived cells displayed CD31, α-smooth muscle, and α-sarcomeric actin antigens, indicating that the differentiation into endothelial, smooth muscle and cardiac muscle lineage was not affected by ferritin overexpression. In conclusion, hFTH can be used as a MRI reporter gene to track dividing/differentiating stem cells in the beating heart, while simultaneously monitoring cardiac morpho-functional changes.


Author(s):  
Dong Mei Xie ◽  
Yang Chen ◽  
Yan Liao ◽  
Wanwen Lin ◽  
Gang Dai ◽  
...  

Objective: Many tissues contained resident mesenchymal stromal/stem cells (MSCs) that facilitated tissue hemostasis and repair. However, there is no typical marker to identify the resident cardiac MSCs. We aimed to determine if CD51 could be an optimal marker of cardiac MSCs and assess their therapeutic potential for mice with acute myocardial infarction (AMI).Methods: Cardiac-derived CD51+CD31–CD45–Ter119– cells (named CD51+cMSCs) were isolated from C57BL/6 mice(7-day-old) by flow cytometry. The CD51+cMSCs were characterized by proliferation capacity, multi-differentiation potential, and expression of typical MSC-related markers. Adult C57BL/6 mice (12-week-old) were utilized for an AMI model via permanently ligating the left anterior descending coronary artery. The therapeutic efficacy of CD51+cMSCs was estimated by echocardiography and pathological staining. To determine the underlying mechanism, lentiviruses were utilized to knock down gene (stem cell factor [SCF]) expression of CD51+cMSCs.Results: In this study, CD51 was expressed in the entire layers of the cardiac wall in mice, including endocardium, epicardium, and myocardium, and its expression was decreased with age. Importantly, the CD51+cMSCs possessed potent self-renewal potential and multi-lineage differentiation capacity in vitro and also expressed typical MSC-related surface proteins. Furthermore, CD51+cMSC transplantation significantly improved cardiac function and attenuated cardiac fibrosis through pro-angiogenesis activity after myocardial infarction in mice. Moreover, SCF secreted by CD51+cMSCs played an important role in angiogenesis both in vivo and in vitro.Conclusions: Collectively, CD51 is a novel marker of cardiac resident MSCs, and CD51+cMSC therapy enhances cardiac repair at least partly through SCF-mediated angiogenesis.


Circulation ◽  
2008 ◽  
Vol 118 (suppl_18) ◽  
Author(s):  
Sonja Schrepfer ◽  
Tobias Deuse ◽  
Christoph Peter ◽  
William Stein ◽  
Tim Doyle ◽  
...  

Adult mesenchymal stem cell (MSC)-based treatment strategies have been proposed to alleviate the consequences of myocardial infarction (MI). The cytokine release of ischemic myocardium was investigated in vivo after LAD ligations in mice and in vitro in cultured cardiomyocytes. Of all cytokines that were at least 5-fold upregulated during ischemia, only HGF and VEGF proved to promote MSC proliferation, and chemotaxis in vitro. Homing of intranenously (IV) injected MSCs (0.5×106 per animal) into the infarct border zone after LAD ligation was inefficient (1±0.5 cells/HPF). Cytokine enhancement (CE) of HGF or VEGF by intramyocardial injection at the time of MI significantly facilitated MSC homing (11±4 cells/HPF and 7±4 cells/HPF, respectively; p=0.001). To our knowledge, this is the first study monitoring cardiac geometry and function over a long-term period of 6 months. using ECG-triggered contrast Micro-CT. It revealed that the progressive decrease in EF over time (to 19±1%) could be attenuated by CE with HGF (29±6%; p=0.003) or VEGF (28±4%; p=0.004) and subsequent IV MSC injection. However, LVEFs of animals treated with CE with HGF or VEGF only, but received no MSC injection, were similar to those groups that also received IV MSCs (p=0.127 and p=0.54, respectively). Best results were finally achieved by prolonged presence of HGF or VEGF, achieved by intramyocardial injection of MSCs stably transfected to produce HGF or VEGF and firefly luciferase into the infarct border zone. Duration of cytokine release was estimated by monitoring MSC survival using in vivo bioluminescence imaging (BLI). BLI signals were detectable for 10 days in contrast to the rapid fate of the cytokines after single dose administration in the CE group, resulting in preserved LVEFs at 6 months This study highlights the beneficial effect of HGF and VEGF to attenuate the negative LV remodelling after MI and diminishes the role of the MSCs to a pure delivery system for paracrine effects.


Sign in / Sign up

Export Citation Format

Share Document