Abstract 2321: Reactive Oxygen Species-Induced Activation of 5′AMP-Activated Protein Kinase Mediates Cardioprotection Against Ischemia and Reperfusion Injury

Circulation ◽  
2008 ◽  
Vol 118 (suppl_18) ◽  
Author(s):  
Geert Onderwater ◽  
Nazha Hamdani ◽  
M. Jumoke A Vreden ◽  
Jeroen Steenhuisen ◽  
Etto C Eringa ◽  
...  

The myocardium possesses intrinsic protective mechanisms against ischemia and reperfusion injury (I/R). 5′AMP-activated protein kinase (AMPK) is known as regulator of cellular energy status and is reduced during diabetes mellitus. Recently, AMPK is also implicated in ischemic preconditioning leading to cardioprotection against I/R. We hypothesize that AMPK is involved in anesthetic-induced cardioprotection and that this AMPK activation is evoked by production of reactive oxygen species (ROS). Isolated Langendorff-perfused rat hearts were subjected to 35 minutes of global ischemia followed by 120 minutes of reperfusion. Hearts were divided into 2 groups: a Control group and a Sevo group receiving three times 5-minute episodes of 2.5 vol% sevoflurane before I/R. AMPK phosphorylation was determined with Western Blot analysis. Cardioprotection was assessed as recovery of left ventricular pressure after I/R and as infarct size using triphenyltetrazolium chloride staining. In the Control group, I/R resulted in a twofold increase in phosphorylation levels of AMPK (Control 1.0 ± 0.1 vs. Control-I/R: 2.3 ± 0.1 a.u., n = 4, p < 0.05). Sevoflurane preconditioning did not immediately, prior to ischemia, affect the AMPK phosphorylation (Sevo 0.9 ± 0.2 vs. Control 1.0 ± 0.2, n = 6), but doubled the increase in AMPK phosphorylation to control after ischemia (Sevo-I: 2.0 ± 0.5 (vs. Control-I), n = 6, p < 0.05), as well as after I/R (Sevo-I/R: 2.1 ± 0.3 vs. (Control-I/R), n = 6, p < 0.05). The AMPK-inhibitor compound C (1 and 10 μM) reduced the increase in AMPK phosphorylation and abolished the cardioprotection derived from functional recovery and infarct size. In addition, the ROS-scavenger n-(2-mercaptopropionyl)-glycine (MPG, 1mM) also reduced the sevoflurane-mediated increase in AMPK phosphorylation and completely prevented cardioprotection. These results demonstrate for the first time a direct link between AMPK activation and the production of ROS in cardioprotection. We conclude that anesthetic-induced AMPK activation protects the heart against I/R and relies on production of ROS, which might be especially important in the context of impaired cardioprotection in the diabetic myocardium.

2010 ◽  
Vol 108 (5) ◽  
pp. 1284-1292 ◽  
Author(s):  
Hannah Moir ◽  
Michael G. Hughes ◽  
Stephen Potter ◽  
Craig Sims ◽  
Lee R. Butcher ◽  
...  

We previously proposed 5′-AMP-activated protein kinase (AMPK) dephosphorylation within immune cells as an intracellular mechanism linking exercise and immunosuppression. In this study, AMPK phosphorylation underwent transient (<1 h) decreases (53.8 ± 7.2% basal) immediately after exercise (45 min of cycling at 70% V̇o2max) in a cohort of 16 adult male participants. Similar effects were seen with running. However, because exercise-induced inactivation of AMPK was previously shown to occur in an AMP-independent manner, the means by which AMPK is inactivated in this context is not yet clear. To investigate the hypothesis that exercise-induced inactivation of AMPK is mediated via signaling mechanisms distinct from changes in cellular AMP-to-ATP ratios, reactive oxygen species (ROS) and intracellular Ca2+ signaling were investigated in mononuclear cells before and after exercise and in cultured monocytic MM6 cells. In in vitro studies, treatment with an antioxidant (ascorbic acid, 4 h, 50 μM) decreased MM6 cell intracellular ROS levels (88.0 ± 5.2% basal) and induced dephosphorylation of AMPK (44.7 ± 17.6% basal). By analogy, the fact that exercise decreased mononuclear cell ROS content (32.8 ± 16.6% basal), possibly due to downregulation (43.4 ± 8.0% basal) of mRNA for NOX2, the catalytic subunit of the cytoplasmic ROS-generating enzyme NADPH oxidase, may provide an explanation for the AMPK-dephosphorylating effect of exercise. In contrast, exercise-induced Ca2+ signaling events did not seem to be coupled to changes in AMPK activity. Thus we propose that the exercise-induced decreases in both intracellular ROS and AMPK phosphorylation seen in this study constitute evidence supporting a role for ROS in controlling AMPK, and hence immune function, in the context of exercise-induced immunosuppression.


2012 ◽  
Vol 124 (6) ◽  
pp. 403-411 ◽  
Author(s):  
Ruth M. Mackenzie ◽  
Ian P. Salt ◽  
William H. Miller ◽  
Angela Logan ◽  
Hagar A. Ibrahim ◽  
...  

The aim of the present study was to determine whether the endothelial dysfunction associated with CAD (coronary artery disease) and T2D (Type 2 diabetes mellitus) is concomitant with elevated mtROS (mitochondrial reactive oxygen species) production in the endothelium and establish if this, in turn, regulates the activity of endothelial AMPK (AMP-activated protein kinase). We investigated endothelial function, mtROS production and AMPK activation in saphenous veins from patients with advanced CAD. Endothelium-dependent vasodilation was impaired in patients with CAD and T2D relative to those with CAD alone. Levels of mitochondrial H2O2 and activity of AMPK were significantly elevated in primary HSVECs (human saphenous vein endothelial cells) from patients with CAD and T2D compared with those from patients with CAD alone. Incubation with the mitochondria-targeted antioxidant, MitoQ10 significantly reduced AMPK activity in HSVECs from patients with CAD and T2D but not in cells from patients with CAD alone. Elevated mtROS production in the endothelium of patients with CAD and T2D increases AMPK activation, supporting a role for the kinase in defence against oxidative stress. Further investigation is required to determine whether pharmacological activators of AMPK will prove beneficial in the attenuation of endothelial dysfunction in patients with CAD and T2D.


2020 ◽  
Vol 16 ◽  
Author(s):  
Andrey Krylatov ◽  
Leonid Maslov ◽  
Sergey Y. Tsibulnikov ◽  
Nikita Voronkov ◽  
Alla Boshchenko ◽  
...  

: There is considerable evidence in the heart that autophagy in cardiomyocytes is activated by hypoxia/reoxygenation (H/R) or in hearts by ischemia/reperfusion (I/R). Depending upon the experimental model and duration of ischemia, increases in autophagy in this setting maybe beneficial (cardioprotective) or deleterious (exacerbate I/R injury). Aside from the conundrum as to whether or not autophagy is an adaptive process, it is clearly regulated by a number of diverse molecules including reactive oxygen species (ROS), various kinases, hydrogen sulfide (H2S) and nitric oxide (NO). The purpose this review is to address briefly the controversy regarding the role of autophagy in this setting and to examine a variety of disparate molecules that are involved in its regulation.


2019 ◽  
Vol 294 (46) ◽  
pp. 17239-17248
Author(s):  
Karin Bartel ◽  
Rolf Müller ◽  
Karin von Schwarzenberg

The cellular energy sensor AMP-activated protein kinase (AMPK) is a metabolic hub regulating various pathways involved in tumor metabolism. Here we report that vacuolar H+-ATPase (V-ATPase) inhibition differentially affects regulation of AMPK in tumor and nontumor cells and that this differential regulation contributes to the selectivity of V-ATPase inhibitors for tumor cells. In nonmalignant cells, the V-ATPase inhibitor archazolid increased phosphorylation and lysosomal localization of AMPK. We noted that AMPK localization has a prosurvival role, as AMPK silencing decreased cellular growth rates. In contrast, in cancer cells, we found that AMPK is constitutively active and that archazolid does not affect its phosphorylation and localization. Moreover, V-ATPase–independent AMPK induction in tumor cells protected them from archazolid-induced cytotoxicity, further underlining the role of AMPK as a prosurvival mediator. These observations indicate that AMPK regulation is uncoupled from V-ATPase activity in cancer cells and that this makes them more susceptible to cell death induction by V-ATPase inhibitors. In both tumor and healthy cells, V-ATPase inhibition induced a distinct metabolic regulatory cascade downstream of AMPK, affecting ATP and NADPH levels, glucose uptake, and reactive oxygen species production. We could attribute the prosurvival effects to AMPK's ability to maintain redox homeostasis by inhibiting reactive oxygen species production and maintaining NADPH levels. In summary, the results of our work indicate that V-ATPase inhibition has differential effects on AMPK-mediated metabolic regulation in cancer and healthy cells and explain the tumor-specific cytotoxicity of V-ATPase inhibition.


2008 ◽  
Vol 294 (1) ◽  
pp. C126-C135 ◽  
Author(s):  
Dan Zheng ◽  
Anjana Perianayagam ◽  
Donna H. Lee ◽  
M. Douglas Brannan ◽  
Li E. Yang ◽  
...  

AMP-activated protein kinase (AMPK), activated by an increase in intracellular AMP-to-ATP ratio, stimulates pathways that can restore ATP levels. We tested the hypothesis that AMPK activation influences extracellular fluid (ECF) K+ homeostasis. In conscious rats, AMPK was activated with 5-aminoimidazole-4-carboxamide-1-beta-d-ribofuranoside (AICAR) infusion: 38.4 mg/kg bolus then 4 mg·kg−1·min−1 infusion. Plasma [K+] and [glucose] both dropped at 1 h of AICAR infusion and [K+] dropped to 3.3 ± 0.04 mM by 3 h, linearly related to the increase in muscle AMPK phosphorylation. AICAR treatment did not increase urinary K+ excretion. AICAR lowered [K+] whether plasma [K+] was chronically elevated or lowered. The K+ infusion rate needed to maintain baseline plasma [K+] reached 15.7 ± 1.3 μmol K+·kg−1·min−1 between 120 and 180 min AICAR infusion. In mice expressing a dominant inhibitory form of AMPK in the muscle (Tg-KD1), baseline [K+] was not different from controls (4.2 ± 0.1 mM), but the fall in plasma [K+] in response to AICAR (0.25 g/kg) was blunted: [K+] fell to 3.6 ± 0.1 in controls and to 3.9 ± 0.1 mM in Tg-KD1, suggesting that ECF K+ redistributes, at least in part, to muscle ICF. In summary, these findings illustrate that activation of AMPK activity with AICAR provokes a significant fall in plasma [K+] and suggest a novel mechanism for redistributing K+ from ECF to ICF.


PLoS ONE ◽  
2018 ◽  
Vol 13 (7) ◽  
pp. e0200508
Author(s):  
Zi-Han Tian ◽  
Jueng-Tsueng Weng ◽  
Li-Jane Shih ◽  
An-Ci Siao ◽  
Tsai-Yun Chan ◽  
...  

2010 ◽  
Vol 298 (1) ◽  
pp. F158-F166 ◽  
Author(s):  
Jinu Kim ◽  
Hee-Seong Jang ◽  
Kwon Moo Park

Ischemic preconditioning by a single event of ischemia and reperfusion (SIRPC) dramatically protects renal function against ischemia and reperfusion (I/R) induced several weeks later. We recently reported that reactive oxygen species (ROS) and oxidative stress were sustained in a kidney that had functionally recovered from I/R injury, thus suggesting an association between SIRPC and ROS and oxidative stress. However, the role of ROS in SIRPC remains to be clearly elucidated. To assess the involvement of ROS in SIRPC, mice were subjected to SIRPC (30 min of bilateral renal ischemia and 8 days of reperfusion) and then exposed to I/R injury. Thirty minutes of bilateral renal ischemia in the non-SIRPC mice resulted in a marked increase in plasma creatinine levels 4 and 24 h after reperfusion, which was not observed in the I/R in the SIRPC mice. SIRPC resulted in increases in the levels of kidney superoxide. Administrations of manganese(III) tetrakis(1-methyl-4-pyridyl) porphyrin [MnTMPyP; a cell-permeable superoxide dismutase (SOD) mimetic] and N-acetylcysteine (NAc; a ROS scavenger) to SIRPC mice blocked the SIRPC-induced increase in superoxide levels and removed ∼48–64% of the functional protection of the SIRPC kidney. Additionally, these administrations significantly inhibited I/R-induced increases in superoxide formation, hydrogen peroxide production, and lipid peroxidation, along with the inhibition of I/R-induced reductions in the expression and activity of manganese SOD, copper-zinc SOD, and catalase. Furthermore, administrations of MnTMPyP or NAc inhibited the SIRPC-induced increase in inducible nitric oxide synthase expression but did not inhibit the SIRPC-induced increases in heat shock protein-25 expression. In conclusion, the renoprotection afforded by SIRPC was triggered by ROS generated by SIRPC.


Sign in / Sign up

Export Citation Format

Share Document