Abstract 4556: Magnetic Resonance Imaging in Evaluating Left Ventricular Rotation and Synchronization in Patients with Congenital Single Ventricle Disease

Circulation ◽  
2008 ◽  
Vol 118 (suppl_18) ◽  
Author(s):  
Xiaokui Li ◽  
Craig S Broberg ◽  
Mary E Joyce ◽  
Helene Houle ◽  
Muhammad Ashraf ◽  
...  

Rotational motion of the left ventricular (LV) myocardium has recently received attention as an index of ventricular function. Echocardiographic methods for evaluation of ventricular mechanics are limited by image quality. We developed a method for evaluating cardiac mechanics on gradient cine magnetic resonance imaging (MRI) studies. Twelve adult single ventricle (SV) patients were retroactively selected to compare with 11 randomly selected relatively normal patients who had undergone cardiac MRI study. Detailed SSFP cine images were acquired at several levels in short axis views using Philips and GE MRI systems. Images from each study were evaluated at the apex and papillary muscle levels using VVI (Siemens) for degree of rotation and circumferential strain rate (CSR). Maximal time difference between each segment was recorded as well as the average degree of rotation. When compared with normal patients, SV patients had less rotation at both apex and papillary muscle levels and more dispersion of peak rotation: average rotation: 1.79° ± 0.81° vs. 3.60° ± 1.38°, p < 0.0001, peak rotation: 3.10° ± 1.25° vs 5.71°± 2.63°, p < 0.0001. In contrast, maximum wall motion delay between the segments of each level for data obtained from both rotation and CSR was greater for SV pathology than normals: rotational segment delay, 181.55 ± 76.06 ms vs. 66.86 ± 47.11 ms, p < 0.0001; CSR delay, 90.73 ± 61.98 ms vs. 44.23 ± 37.14 ms, p = 0.004. Average CSR for SV was −8.87 ± 7.30 s −1 and for normals, −18.02 ± 7.31 s −1 . Our MRI mechanics study showed decreased CSR in SVs compared to normal LVs, and also a marked decrease in and segmental dyssynchrony of rotation.

2009 ◽  
Vol 30 (13) ◽  
pp. 1643-1647 ◽  
Author(s):  
Christoph A. Busjahn ◽  
Jeanette Schulz-Menger ◽  
Hassan Abdel-Aty ◽  
Andre Rudolph ◽  
Jens Jordan ◽  
...  

2020 ◽  
Author(s):  
Guanghui Yang ◽  
Chengrui Fu ◽  
Guanzhong Gong ◽  
Jing Zhang ◽  
Qian Wang ◽  
...  

Abstract Background: Cardiac movement can affect the accuracy of the evaluation of the location of heart and its substructures by planning computed tomography (CT). We aimed to measure the margin displacement and calculate compensatory margins through breath-hold electrocardiograph (ECG)-gated 4-dimensional magnetic resonance imaging (4D-MRI) for oesophageal radiotherapy.Methods: The study enrolled 10 patients with oesophageal radiotherapy plans and pretreatment 4D-MRI data. The displacement of the heart and its substructures was measured between the end of the systolic and diastolic phases in one cardiac cycle. The compensatory margins were calculated by extending the planning CT to cover the internal target volume (ITV) of all structures. Differences between groups were tested with the Kruskal-Wallis H test.Results: The extent of movement of the heart and its substructures during one cardiac cycle were approximately 4.0-26.1 mm in the anterior-posterior (AP),left-right (LR), and cranial-caudal (CC) axes, and the compensatory margins should be applied to the planning CT by extending the margins by 1.7, 3.6, 1.8, 3.0, 2.1, and 2.9 mm for the pericardium, 1.2, 2.5, 1.0, 2.8, 1.8, and 3.3 mm for the heart, 3.8, 3.4, 3.1, 2.8, 0.9, and 2.0 mm for the interatrial septum, 3.3, 4.9, 2.0, 4.1, 1.1, and 2.9 mm for the interventricular septum, 2.2, 3.0, 1.1, 5.3, 1.8, and 2.4 mm for the left ventricular muscle (LVM), 5.9, 3.4, 2.1, 6.1, 5.4, and 3.6 mm for the antero-lateral papillary muscle (ALPM), and 6.6, 2.9, 2.6, 6.6, 3.9, and 4.8 mm for the postero-medial papillary muscle (PMPM) in the anterior, posterior, left, right, cranial, and caudal directions.Conclusions: The locations of the heart and its substructures determined by planning CT were not able to represent the true positions due to cardiac movement, and compensatory margins can be applied to decrease the influence of movement.


2021 ◽  
Vol 21 (1) ◽  
Author(s):  
Xiaofen Yao ◽  
Liwei Hu ◽  
Yafeng Peng ◽  
Fei Feng ◽  
Rongzhen Ouyang ◽  
...  

Abstract Background To assess the accuracy and reproducibility of right ventricular (RV) and left ventricular (LV) function and flow measurements in children with repaired tetralogy of Fallot (rTOF) using four-dimensional (4D) flow, compared with conventional two-dimensional (2D) magnetic resonance imaging (MRI) sequences. Methods Thirty pediatric patients with rTOF were retrospectively enrolled to undergo 2D balanced steady-state free precession cine (2D b-SSFP cine), 2D phase contrast (PC), and 4D flow cardiac MRI. LV and RV volumes and flow in the ascending aorta (AAO) and main pulmonary artery (MPA) were quantified. Pearson’s or Spearman’s correlation tests, paired t-tests, the Wilcoxon signed-rank test, Bland–Altman analysis, and intraclass correlation coefficients (ICC) were performed. Results The 4D flow scan time was shorter compared with 2D sequences (P < 0.001). The biventricular volumes between 4D flow and 2D b-SSFP cine had no significant differences (P > 0.05), and showed strong correlations (r > 0.90, P < 0.001) and good consistency. The flow measurements of the AAO and MPA between 4D flow and 2D PC showed moderate to good correlations (r > 0.60, P < 0.001). There was good internal consistency in cardiac output. There was good intraobserver and interobserver biventricular function agreement (ICC > 0.85). Conclusions RV and LV function and flow quantification in pediatric patients with rTOF using 4D flow MRI can be measured accurately and reproducibly compared to those with conventional 2D sequences.


Author(s):  
Shinya Ito ◽  
Akihiro Isotani ◽  
Kyohei Yamaji ◽  
Kenji Ando

Abstract Background  Löffler endocarditis is a condition characterized by cardiac infiltration of eosinophils. Cardiac magnetic resonance imaging (MRI) is a modality for the diagnosis of myocardial damage. Case summary  This is the case of a 77-year-old man with acute decompensated heart failure who was admitted. Transthoracic echocardiography showed preserved left ventricular (LV) systolic function along with LV thrombi attached to the septo-apical wall and the posterior wall, consistent with Löffler endocarditis. Cardiac MRI revealed obliteration of the LV apex and partial filling of the LV cavity, as well as near circumferential subendocardial late gadolinium enhancement (LGE) in the mid- and apical segments. T2-weighted images showed a near circumferential high-intensity area of the LV subendocardial muscle in the mid- and apical segments. High-dose corticosteroids and intravenous heparin were initiated, followed by maintenance warfarin therapy. At 18 months, follow-up cardiac MRI revealed the disappearance of the LV thrombi, and a reduction of LGE, as well as high-intensity areas in the T2-weighted images. Discussion  The high-intensity area of T2-weighted images indicate the presence of subendocardial oedema. Eosinophil-mediated heart damage evolves through three stages: (i) acute necrotic, (ii) thrombotic, and (iii) fibrotic stages. Since the deposition of toxic eosinophil granule proteins and eosinophil infiltration injured the endocardium, the first-line treatment for Löffler endocarditis is corticosteroid therapy. In this case, LGE in the subendocardium and the high-intensity area in the T2-weighted images were reduced at 18 months. High-intensity areas of T2-weighted images in the acute phase might indicate the possibility of therapeutic response to corticosteroid therapy.


2019 ◽  
Vol 40 (Supplement_1) ◽  
Author(s):  
S Ulbrich ◽  
R S Schoenbauer ◽  
B Kirstein ◽  
J Tomala ◽  
Y Huo ◽  
...  

Abstract Background The relation of left atrial low voltage zones (LVZ) to left ventricular function in patients undergoing pulmonary vein isolation (PVI) is not known. Objective To explore the relationship of left atrial low voltage zones (LVZ) on left ventricular function in patients with atrial fibrillation. Methods From June to Nov. 2018, 107 (mean age 67y, 70 men, 73 persistent AF) consecutive patients with symptomatic AF underwent a PVI with LVZ mapping. Before PVI the left ventricular ejection fraction (EF) and stroke volume (SV) were measured by cardiac magnetic resonance imaging (CMR). From feature-tracking of CMR-cine images left ventricular global, systolic and diastolic longitudinal strains (GLS), circumferential strains (GCS) and radial strains (GRS) were calculated. Results Of 59 patients CMR scanning in sinus rhythm was performed, LVZ were present in 24 patients. LVEF was significantly lower in patients with left atrial LVZ (62±9% vs. 55±15%) (p=0,03). Left ventricular stroke volume was significantly decreased by the extent of LVZ (94±23 vs. 72±21ml), (p=0,03). The left ventricular diastolic strains during ventricular filling (caused by atrial contraction) of GLS (r=−0,52), GCS (r=−0,65) and GRS (r=−0,65) were highly signifcantly correlated to the occurence and extent of LVZ (each p<0,001 respectively). The only systolic ventricular strain was GLS, which decreased (r=−0,3, p=0,03) by the occurance of atrial low voltage. Conclusion The active, atrial part of diastolic left ventricular filling properties is impaired by the occurrence and extent of left atrial LVZ. In patients with left atrial LVZ the left ventricular stroke volume and ejection fraction is decreased already in sinus rhythm. It seems possible that atrial mechanical dysfunction and presence of atrial low voltage maybe predicted by LV diastolic strain analysis.


Sign in / Sign up

Export Citation Format

Share Document