Abstract 12583: C-Type Natriuretic Peptide Improves Left Ventricular Systolic and Diastolic Functional Performance at Rest and During Exercise After Heart Failure

Circulation ◽  
2014 ◽  
Vol 130 (suppl_2) ◽  
Author(s):  
Che Ping Cheng ◽  
Hiroshi Hasegawa ◽  
Atsushi Morimoto ◽  
Heng-Jie Cheng ◽  
William C Little

Background: In heart failure (HF), the impaired left ventricular (LV) arterial coupling and diastolic dysfunction present at rest are exacerbated during exercise (Ex). C-type natriuretic peptide (CNP), the third member of the natriuretic peptide family produced by the vascular endothelium and heart is elevated in HF. However, its functional effects are unclear. We tested the hypotheses that CNP with vasodilating, natriuretic, and lusitropic actions may prevent this abnormal Ex response after HF. Methods: We assessed the effects of CNP on LV functional performance at rest and during submaximum Ex (3.5-5.5 mph for 6-8 min) in 10 instrumented dogs with pacing-induced HF. Since CNP mediated its biological actions via cGMP, we also measured plasma cGMP levels in response to CNP infusion at rest before and after HF. Results: CNP (2 μg/kg plus 0.4 μg/kg/min, iv, 20 min) caused a similar increase in cGMP levels before (7.2±3.8 to 24.7±4.9 pmol/ml) and after HF (20.2±4.4 to 71.6±5.0 pmol/ml). After HF, at rest, CNP reduced LV end-systolic pressure (P ES , CNP: 93 vs Baseline: 104 mmHg), arterial elastance (E A , 8.3 vs 11.7 mmHg/ml) and end-diastolic pressure (P ED , 37.2 vs 42.4 mmHg) (p<0.05). The peak mitral flow (dV/dt max , 201±51 vs 160±34ml/sec) was also increased due to decreased minimum LVP (LVP min , 17.1 vs 23.8 mmHg) and the time constant of LV relaxation (t, 40±4 vs 48±6 msec) (p<0.05). In addition, the slope of LV end-systolic pressure-volume relations (E ES ) was increased (5.6±0.7 vs 4.2±0.9 mmHg/ml). The LV-arterial coupling, quantified as E ES /E A , was improved (0.69±0.22 vs 0.48±0.16) (p<0.05). The beneficial effects persisted during Ex. At matched levels of Ex, treatment with CNP, Ex-induced significantly less increases in P ES (ΔP= 3.4±0.5 vs 7.4±0.8 mmHg), mean LAP (ΔP= -3.1±2.2 vs 3.6±2.9 mmHg), and LVP min (ΔP= -3.6±1.4 vs 1.4±1.2 mmHg) (p<0.05). With CNP, t was much shortened (Δ= -0.8±4.0 vs 2.8±3.2 ms), and the peak mitral flow was further augmented (ΔdV/dt max , 75±20 vs 43±12 ml/sec) (p<0.05). Conclusion: After HF, the generation of cGMP in response to CNP is not blunted. CNP produces arterial vasodilatation and augments LV contraction, relaxation, diastolic filling and LV arterial coupling, thus improving LV performance, both at rest and during Ex after HF.

2005 ◽  
Vol 288 (2) ◽  
pp. H914-H922 ◽  
Author(s):  
Hideo Tachibana ◽  
Heng-Jie Cheng ◽  
Tomohiko Ukai ◽  
Akihiko Igawa ◽  
Zhu-Shan Zhang ◽  
...  

The new myofilament Ca2+ sensitizer levosimendan (LSM) is a positive inotropic and vasodilatory agent. Its beneficial effects have been demonstrated at rest in congestive heart failure (CHF). However, its effect during exercise (Ex) in CHF is unknown. We assessed the effects of LSM on left ventricular (LV) dynamics at rest and during Ex in eight conscious, instrumented dogs with pacing-induced CHF. After CHF, with dogs at rest, LSM decreased arterial elastance ( Ea) and increased LV contractile performance as assessed by the slope of LV pressure-volume (P-V) relation. LSM caused a >60% increase in the peak rate of mitral flow (dV/d tmax) due to decreases in minimal LV pressure and the time constant of LV relaxation (τ). LV arterial coupling, quantified as the ratio of end-systolic elastance ( Ees) to Ea, was increased from 0.47 to 0.85%. LV mechanical efficiency, determined as the ratio of stroke work to total P-V area, was improved from 0.54 ± 0.09 to 0.61 ± 0.07. These beneficial effects persisted during Ex after CHF. Compared with CHF Ex dogs, treatment with LSM prevented Ex-induced abnormal increases in mean left atrial pressure and end-diastolic pressure and decreased Ees/ Ea. With LSM treatment during CHF Ex, the early diastolic portion of the LV P-V loop was shifted downward with decreased minimal LV pressure and τ values and a further augmented dV/d tmax. Ees/ Ea improved, and mechanical efficiency further increased from 0.61 ± 0.07 to 0.67 ± 0.07, which was close to the value reached during normal Ex. After CHF, LSM produced arterial vasodilatation; improved LV relaxation and diastolic filling; increased contractility, LV arterial coupling, and mechanical efficiency; and normalized the response to Ex.


2004 ◽  
Vol 287 (3) ◽  
pp. H1003-H1012 ◽  
Author(s):  
Keisuke Kawai ◽  
Fuzhong Qin ◽  
Junya Shite ◽  
Weike Mao ◽  
Shuji Fukuoka ◽  
...  

The present study was carried out to determine whether beneficial effects of carvedilol in congestive heart failure (CHF) are mediated via its β-adrenergic blocking, antioxidant, and/or α-adrenergic blocking action. Rabbits with heart failure induced by rapid cardiac pacing were randomized to receive subcutaneous carvedilol, metoprolol, propranolol plus doxazosin, or placebo pellets for 8 wk and compared with sham-operated rabbits without pacing. We found rapid cardiac pacing produced clinical heart failure, left ventricular dilation, and decline of left ventricular fractional shortening. This was associated with an increase in left ventricular end-diastolic pressure, decrease in left ventricular first derivative of left ventricular pressure, and myocyte hypertrophy. Tissue oxidative stress measured by GSH/GSSG was increased in the heart with increased oxidation product of mitochondrial DNA, 8-oxo-7,8-dihydro-2′-deoxyguanosine, increase of Bax, decrease of Bcl-2, and increase of apoptotic myocytes as measured by anti-single-stranded DNA monoclonal antibody. Administration of carvedilol and metoprolol, which had no effect in sham animals, attenuated cardiac ventricular remodeling, cardiac hypertrophy, oxidative stress, and myocyte apoptosis in CHF. In contrast, propranolol plus doxazosin, which has less antioxidant effects, produced smaller effects on left ventricular function and myocyte apoptosis. In all animals, GSH/GSSG correlated significantly with changes of left ventricular end-diastolic dimension ( r = −0.678, P < 0.0001), fractional shortening ( r = 0.706, P < 0.0001), and apoptotic myocytes ( r = −0.473, P = 0.0001). Thus our findings suggest antioxidant and antiapoptotic actions of carvedilol and metoprolol are important determinants of clinical beneficial effects of β-receptors in the treatment of CHF.


1998 ◽  
Vol 274 (3) ◽  
pp. H945-H954 ◽  
Author(s):  
Steven B. Solomon ◽  
Srdjan D. Nikolic ◽  
Stanton A. Glantz ◽  
Edward L. Yellin

In patients with heart failure, decreased contractility resulting in high end-diastolic pressures and a restrictive pattern of left ventricular filling produces a decrease in early diastolic filling, suggesting a stiff ventricle. This study investigated the elastic properties of the myocardium and left ventricular chamber and the ability of the heart to utilize elastic recoil to facilitate filling during pacing-induced heart failure in the anesthetized dog. Elastic properties of the myocardium were determined by analyzing the myocardial stress-strain relation. Left ventricular chamber properties were determined by analyzing the pressure-volume relation using a logarithmic approach. Elastic recoil was characterized using a computer-controlled mitral valve occluder to prevent transmitral flow during diastole. We conclude that, during heart failure, the high end-diastolic pressures suggestive of a stiff ventricle are due not to stiffer myocardium but to a ventricle whose chamber compliance characteristics are changed due to geometric remodeling of the myocardium. The restrictive filling pattern is a result of the ventricle being forced to operate on the stiff portion of the diastolic pressure-volume relation to maintain cardiac output. Slowed relaxation and decreased contractility result in an inability of the heart to contract to an end-systolic volume below its diastolic equilibrium volume. Thus the left ventricle cannot utilize elastic recoil to facilitate filling during heart failure.


Circulation ◽  
2020 ◽  
Vol 142 (Suppl_3) ◽  
Author(s):  
Naoki Fujimoto ◽  
Keishi Moriwaki ◽  
Issei Kameda ◽  
Masaki Ishiyama ◽  
Taku Omori ◽  
...  

Introduction: Isometric handgrip (IHG) training at 30% maximal voluntary contraction (MVC) lowers blood pressure in hypertensive patients. Impacts of IHG exercise and post-exercise circulatory arrest (PECA), which isolates metaboreflex control, have been unclear in heart failure (HF). Purpose: To investigate the impacts of IHG exercise and PECA on ventricular-arterial stiffness and left ventricular (LV) relaxation in HF with preserved (HFpEF) and reduced ejection fraction (HFrEF). Methods: We invasively obtained LV pressure-volume (PV) loops in 20 patients (10 HFpEF, 10 HFrEF) using conductance catheter with microtip-manometer during 3 minutes of IHG at 30%MVC and 3 minutes of PECA. Hemodynamics and LV-arterial function including LV end-systolic elastance (Ees) by the single-beat method, effective arterial elastance (Ea), and time constant of LV relaxation (Tau) were evaluated every minute. Results: At rest, HFpEF had higher LV end-systolic pressure (ESP) and lower heart rate than HFrEF with similar LV end-diastolic pressure (EDP). The coupling ratio (Ees/Ea) was greater in HFpEF than HFrEF (1.0±0.3 vs. 0.6±0.3, p<0.01). IHG for 3minutes similarly increased heart rate in HFpEF (by 10±8 bpm) and HFrEF (by 14±6 bpm). IHG also increased end-diastolic and LVESP (134±21 vs. 158±30 mmHg and 113±25 vs. 139±25 mmHg) in both groups (groupхtime effect p≥0.25). In HFpEF, Ees, Ea and Ees/Ea (1.0±0.3 vs. 1.1±0.4) were unaffected during IHG. In HFrEF, IHG induced variable increases in Ea. LV end-systolic volume and the ESPV volume-axis intercept were larger, and Ees at IHG 3 rd min was greater (1.30±0.7 vs. 3.1±2.1 mmHg/ml, p<0.01) than baseline, resulting in unchanged Ees/Ea at IHG 3 rd min (0.6±0.3 vs. 0.8±0.4, p≥0.37). Tau was prolonged only in HFrEF during IHG and was returned to the baseline value during PECA. During the first 2 minutes of PECA, LVESP was lower than that at IHG 3 rd min only in HFpEF, suggesting less metaboreflex control of blood pressure in HFpEF during IHG. Conclusions: IHG exercise at 30%MVC induced modest increases in LV end-systolic and end-diastolic pressures in HFpEF and HFrEF. Although the prolongation of LV relaxation was observed only in HFrEF, the ventricular and arterial coupling was maintained throughout the IHG exercise in both groups.


1994 ◽  
Vol 267 (1) ◽  
pp. H182-H186 ◽  
Author(s):  
T. Nishikimi ◽  
K. Miura ◽  
N. Minamino ◽  
K. Takeuchi ◽  
T. Takeda

To investigate the role of endogenous atrial natriuretic peptide (ANP) in rats with heart failure (HF), we administered HS-142-1 (HS; 3 mg/kg body wt iv), a novel nonpeptide ANP-receptor antagonist, to rats with surgically induced myocardial infarction and sham-operated rats. HF was characterized by a higher left ventricular end-diastolic pressure and higher plasma ANP concentration vs. controls. HS administration significantly reduced the plasma and urinary levels of guanosine 3',5'-cyclic monophosphate in rats with HF [plasma concentration 10.6 +/- 2.6 vs. 2.7 +/- 0.4 nM (P < 0.05); urinary excretion 48 +/- 8 vs. 12 +/- 2 pmol/min (P < 0.05)]. Systemic and renal hemodynamics were unaffected by HS administration. Urine flow (-35%) and urinary sodium excretion (-50%) were significantly decreased after HS only in those rats with HF that had no changes in systemic and renal hemodynamics. These results suggest that the elevated ANP levels in HF do not contribute directly to the maintenance of systemic hemodynamics but rather compensate for the HF mainly via diuresis and natriuresis, achieved by the inhibition of renal tubular reabsorption rather than by renal vasodilatation.


2003 ◽  
Vol 228 (7) ◽  
pp. 811-817 ◽  
Author(s):  
Laila Elsherif ◽  
Raymond V. Ortines ◽  
Jack T. Saari ◽  
Y. James Kang

Copper Deficiency (CuD) leads to hypertrophic cardiomyopathy in various experimental models. The morphological, electrophysiological, and molecular aspects of this hypertrophy have been under investigation for a long time. However the transition from compensated hypertrophy to decompensated heart failure has not been investigated in the study of CuD. We set out to investigate the contractile and hemodynamic parameters of the CuD mouse heart and to determine whether heart failure follows hypertrophy in the CuD heart. Dams of FVB mice were fed CuD or copper-adequate (CuA) diet starting from the third day post delivery and the weanling pups were fed the same diet for a total period of 5 weeks (pre- and postweanling). At week 4, the functional parameters of the heart were analyzed using a surgical technique for catheterizing the left ventricle. A significant decrease in left ventricle systolic pressure was observed with no significant change in heart rate, and more importantly contractility as measured by the maximal rate of left ventricular pressure rise (+dP/dt) and decline (−dP/dt) were significantly depressed in the CuD mice. However, left ventricle end diastolic pressure was elevated, and relaxation was impaired in the CuD animals; the duration of relaxation was prolonged. In addition to significant changes in the basal level of cardiac function, CuD hearts had a blunted response to the stimulation of the β-adrenergic agonist isoproterenol. Furthermore, morphological analysis revealed increased collagen accumulation in the CuD hearts along with lipid deposition. This study shows that CuD leads to systolic and diastolic dysfunction in association with histopathological changes, which are indices commonly used to diagnose congestive heart failure.


2019 ◽  
Vol 2019 ◽  
pp. 1-9 ◽  
Author(s):  
Quan-wei Wang ◽  
Xiao-feng Yu ◽  
Hua-li Xu ◽  
Xue-zhong Zhao ◽  
Da-yuan Sui

Objective. Panax ginseng is used widely for treatment of cardiovascular disorders in China. Ginsenoside Re is the main chemical component of P. ginseng. We aimed to investigate the protective effect of ginsenoside Re on isoproterenol-induced myocardial fibrosis and heart failure in rats. Methods. A model of myocardial fibrosis and heart failure was established by once-daily subcutaneous injection of isoproterenol (5 mg/kg/day) to rats for 7 days. Simultaneously, rats were orally administrated ginsenoside Re (5 or 20 mg/kg) or vehicle daily for 4 weeks. Results. Isoproterenol enhanced the heart weight, myocardial fibrosis, and hydroxyproline content in rat hearts. Ginsenoside Re inhibited (at least in part) the isoproterenol-induced increase in heart weight, myocardial fibrosis, and hydroxyproline content. Compared with the isoproterenol group, treatment with ginsenoside Re ameliorated changes in left ventricular systolic pressure, left ventricular end diastolic pressure, and the positive and negative maximal values of the first derivative of left ventricular pressure. Ginsenoside Re administration also resulted in decreased expression of transforming growth factor (TGF)-β1 in serum and decreased expression of Smad3 and collagen I in heart tissue. Conclusion. Ginsenoside Re can improve isoproterenol-induced myocardial fibrosis and heart failure by regulation of the TGF-β1/Smad3 pathway.


2020 ◽  
Vol 13 (11) ◽  
Author(s):  
Vivek Y. Reddy ◽  
Jan Petrů ◽  
Filip Málek ◽  
Lee Stylos ◽  
Steve Goedeke ◽  
...  

Background: Morbidity and mortality outcomes for patients admitted for acute decompensated heart failure are poor and have not significantly changed in decades. Current therapies are focused on symptom relief by addressing signs and symptoms of congestion. The objective of this study was to test a novel neuromodulation therapy of stimulation of epicardial cardiac nerves passing along the posterior surface of the right pulmonary artery. Methods: Fifteen subjects admitted for defibrillator implantation and ejection fraction ≤35% on standard heart failure medications were enrolled. Through femoral arterial access, high fidelity pressure catheters were placed in the left ventricle and aortic root. After electro anatomic rendering of the pulmonary artery and branches, either a circular or basket electrophysiology catheter was placed in the right pulmonary artery to allow electrical intravascular stimulation at 20 Hz, 4 ms pulse width, and ≤20 mA. Changes in maximum positive dP/dt (dP/dt Max ) indicated changes in ventricular contractility. Results: Of 15 enrolled subjects, 5 were not studied due to equipment failure or abnormal pulmonary arterial anatomy. In the remaining subjects, dP/dt Max increased significantly by 22.6%. There was also a significant increase in maximum negative dP/dt (dP/dt Min ), mean arterial pressure, systolic pressure, diastolic pressure, and left ventricular systolic pressure. There was no significant change in heart rate or left ventricular diastolic pressure. Conclusions: In this first-in-human study, we demonstrated that in humans with stable heart failure, left ventricular contractility could be accentuated without an increase in heart rate or left ventricular filling pressures. This benign increase in contractility may benefit patients admitted for acute decompensated heart failure.


2001 ◽  
Vol 280 (3) ◽  
pp. H1129-H1135 ◽  
Author(s):  
Mohamed A. Gaballa ◽  
Andrea Eckhart ◽  
Walter J. Koch ◽  
Steven Goldman

We identified abnormalities in the vascular β-adrenergic receptor (β-AR) signaling pathway in heart failure after myocardial infarction (MI). To examine these abnormalities, we measured β-AR-mediated hemodynamics, vascular reactivity, and the vascular β-AR molecular signaling components in rats with heart failure after MI. Six weeks after MI, these rats had an increased left ventricular (LV) end-diastolic pressure, decreased LV systolic pressure, and decreased rate of LV pressure change (dP/d t). LV dP/d t responses to isoproterenol were shifted downward, although the responses for systemic vascular resistance were shifted upward in heart failure rats ( P < 0.05). Isoproterenol- and IBMX-induced vasorelaxations were blunted in heart failure rats ( P< 0.05) with no change in the forskolin-mediated vasorelaxation. These changes were associated with the following alterations in β-AR signaling ( P < 0.05): decreases in β-AR density (aorta: 58.7 ± 6.0 vs. 35.7 ± 1.9 fmol/mg membrane protein; carotid: 29.6 ± 5.6 vs. 18.0 ± 3.9 fmol/mg membrane protein, n = 5), increases in G protein-coupled receptor kinase activity levels (relative phosphorimage counts of 191 ± 39 vs. 259 ± 26 in the aorta and 115 ± 30 vs. 202 ± 7 in the carotid artery, n = 5), and decreases in cGMP and cAMP in the carotid artery (0.85 ± 0.10 vs. 0.31 ± 0.06 pmol/mg protein and 2.3 ± 0.3 vs. 1.2 ± 0.1 pmol/mg protein, n = 5) with no change in Gαs or Gαi in the aorta. Thus in heart failure there are abnormalities in the vascular β-AR system that are similar to those seen in the myocardium. This suggests a common neurohormonal mechanism and raises the possibility that treatment in heart failure focused on the myocardium may also affect the vasculature.


Sign in / Sign up

Export Citation Format

Share Document