Abstract 16949: Failing Fontan: Genesis of a Subpulmonary Neo-ventricle From Engineered Heart Tissue

Circulation ◽  
2015 ◽  
Vol 132 (suppl_3) ◽  
Author(s):  
Daniel Biermann ◽  
Alexandra Eder ◽  
Hatim Seoudy ◽  
Florian Arndt ◽  
Tillmann Schuler ◽  
...  

Introduction: Fontan palliation is the treatment of choice for patients with morphological or functional univentricular hearts. The unphysiologic and non-pulsatile pulmonary blood flow results in multiorgan complications and a poor long-term outcome. We evaluated graft survival and histomorphology of a pulsatile Fontan conduit generated from Engineered Heart Tissue (EHT) after implantation in a rat model. Hypothesis: We hypothesized that EHT matures and remains contractile in the setting of venous (Fontan-like) preload. Methods: EHT was generated from ventricular cardiomyocytes of neonatal Wistar rats, fibrinogen, thrombin and DMEM. After culture for 14 days constructs were implanted around the right superior vena cava of Wistar rats (n=12, 300-350 g). Immunosupression was achieved by daily subcutaneous injection of Cyclosporin A (25 mg/kg BW) and Methylprednisolone (2 mg/kg BW). MRI (Bruker) was used to assess condensation of EHTs in vivo. Animals were euthanized after 7, 14, 28 and 56 days postoperatively for histomorphological analysis. Transmission electron microscopy was used to evaluate sarcomeric integrity of cardiomyocytes within the construct. Results: In culture, EHTs started beating around day 8 and remained contractile in vivo throughout the experiment (d7=3/3, d14=2/3, d28=3/3, d56=2/3). All animals survived circumferential implantation of EHTs around the right SVC via a right thoracotomy. MRI (d14, n=3) revealed no constriction or stenosis of the SVC by the constructs. Hematoxylin and Eosin staining showed densely packed bundles of cardiomyocytes within the EHT conduit and intense vascularisation. Immunolabeling of actinin and connexin 43 indicated adequate maturation of cardiomyocytes after grafting around the right SVC in rats. Conclusions: EHTs placed around the superior caval vein of Wistar rats survive and contract for a considerable time after implantation. Histomorphology revealed a matured phenotype of grafted cardiomyocytes and an adequate vascularisation. The functional benefit of a contractile neo-ventricle to propel pulmonary blood flow in Fontan patients remains to be evaluated.

1984 ◽  
Vol 56 (4) ◽  
pp. 966-974 ◽  
Author(s):  
H. V. Thommasen ◽  
B. A. Martin ◽  
B. R. Wiggs ◽  
M. Quiroga ◽  
E. M. Baile ◽  
...  

The effect of pulmonary blood flow on leukocyte uptake and release by the lung was examined in 10 anesthetized spontaneously breathing dogs. Pulmonary arterial and pulmonary venous blood was sampled with catheters placed into the right ventricle and aorta, respectively. Pulmonary blood flow was lowered by inflating a balloon catheter located in the inferior vena cava. In five experiments simultaneous blood samples were drawn from the right ventricle and aorta at 10-s intervals during a control period, a 2- to 3-min period of low flow, and a recovery period. In five additional experiments, less frequent samples were taken over periods of 15–60 min. Total leukocyte concentrations and differential counts were determined for each blood sample. The study shows that large numbers of leukocytes become sequestered within the lung when pulmonary blood flow is low and that an equivalent number of cells are released from the lung after deflation of the balloon catheter. Both the polymorphonuclear leukocytes and the lymphocytes were taken up by the lung when pulmonary blood flow was reduced. We conclude that pulmonary blood flow has a marked effect on the uptake and release of leukocytes by the dog lung.


1986 ◽  
Vol 61 (6) ◽  
pp. 2136-2143 ◽  
Author(s):  
D. C. Curran-Everett ◽  
K. McAndrews ◽  
J. A. Krasney

The effects of acute hypoxia on regional pulmonary perfusion have been studied previously in anesthetized, artificially ventilated sheep (J. Appl. Physiol. 56: 338–342, 1984). That study indicated that a rise in pulmonary arterial pressure was associated with a shift of pulmonary blood flow toward dorsal (nondependent) areas of the lung. This study examined the relationship between the pulmonary arterial pressor response and regional pulmonary blood flow in five conscious, standing ewes during 96 h of normobaric hypoxia. The sheep were made hypoxic by N2 dilution in an environmental chamber [arterial O2 tension (PaO2) = 37–42 Torr, arterial CO2 tension (PaCO2) = 25–30 Torr]. Regional pulmonary blood flow was calculated by injecting 15-micron radiolabeled microspheres into the superior vena cava during normoxia and at 24-h intervals of hypoxia. Pulmonary arterial pressure increased from 12 Torr during normoxia to 19–22 Torr throughout hypoxia (alpha less than 0.049). Pulmonary blood flow, expressed as %QCO or ml X min-1 X g-1, did not shift among dorsal and ventral regions during hypoxia (alpha greater than 0.25); nor were there interlobar shifts of blood flow (alpha greater than 0.10). These data suggest that conscious, standing sheep do not demonstrate a shift in pulmonary blood flow during 96 h of normobaric hypoxia even though pulmonary arterial pressure rises 7–10 Torr. We question whether global hypoxic pulmonary vasoconstriction is, by itself, beneficial to the sheep.


1973 ◽  
Vol 15 (2) ◽  
pp. 128-134 ◽  
Author(s):  
Francis Robicsek ◽  
Walter P. Scott ◽  
Norris B. Harbold ◽  
Harry K. Daugherty ◽  
Donald C. Mullen

1992 ◽  
Vol 73 (4) ◽  
pp. 1291-1296 ◽  
Author(s):  
L. E. Olson ◽  
R. L. Wardle

We examined whether wedging a catheter (0.5 cm OD) into a subsegmental airway in dog (n = 6) or pig lungs (n = 5) and increasing pressure in the distal lung segment affected pulmonary blood flow. Dogs and pigs were anesthetized and studied in the prone position. Pulmonary blood flow was measured by injecting radiolabeled microspheres (15 microns diam) into the right atrium when airway pressure (Pao) was 0 cmH2O and pressure in the segment distal to the wedged catheter (Ps) was 0, 5, or 15 cmH2O and when Pao = Ps = 15 cmH2O. The lungs were excised, air-dried, and sectioned. Blood flow per gram dry weight normalized to cardiac output to the right or left lung, as appropriate, was calculated for the test segment, a control segment in the opposite lung corresponding anatomically to the test segment, the remainder of the lung containing the test segment (test lung), and the remainder of the lung containing the control segment (control lung). The presence of the catheter reduced blood flow in the test segment compared with that in the control segment and in the test lung. Blood flow was not affected by increasing pressure in the test segment. We conclude that, in studies designed to measure collateral ventilation in dog lungs, the presence of the wedged catheter is likely to have a greater effect on blood flow than the increase in pressure associated with measuring collateral airway resistance.


2016 ◽  
Vol 36 (suppl_1) ◽  
Author(s):  
Chase W Kessinger ◽  
Ahmed Tawakol ◽  
Gregory R Wojtkiewicz ◽  
Peter K Henke ◽  
Ralph Weissleder ◽  
...  

Objective: While venous thrombosis (VT)-induced inflammation facilitates thrombus resolution, inflammation causes vein wall scarring (VWS). Recently, statins have shown to improve VT resolution and reduce VT inflammatory components. In this study, we hypothesized that early VT inflammation detected by 18F-FDG positron emission tomography/computed tomography (PET/CT) could predict subsequent late stage VWS, and would be attenuated by statin therapy. Methods: Stasis VT was induced in 8-12 week old male C57BL/6 mice (n=31) in either the right jugular vein (n=13) or inferior vena cava (IVC,n=18). Animals in the IVC VT cohort were randomized to statin (n=8) or control (n=10) treatment. Statin, rosuvastatin (5mg/kg), was administered by oral gavage, daily starting 24 hours prior to VT induction; control mice received saline. All mice underwent survival FDG-PET/CT venography imaging on day 2. FDG inflammation signals (standard uptake value=SUV) were measured in the thrombosed vein and compared to the sham-operated venous segments or treatment control. On day 14, mice were sacrificed and VT tissue was resected. Picrosirius red staining allowed measurement of collagen and vein wall thickness in VT sections. Results: FDG-PET/CT at day 2 revealed increased inflammation signal activity in jugular VT (SUV 1.43 ± 0.3 VT vs. 0.81 ± 0.3 contralateral vein, p<0.0001). Statin-treated mice showed a trend of decreased inflammation signal at day 2 in the IVC VT models (SUV 1.02 ± 0.1 statin VT vs. 1.42 ± 0.2 control VT, p=0.07). Day 14 histological analysis revealed significantly reduced vein wall injury in statin-treated animals (thickness, 32±9.4 μm statin; vs. 56.2±14.7 μm control, p=0.02). Day 2 FDG-PET inflammation in VT correlated positively with the magnitude of day 14 VWS (jugular VT, Spearman r=0.62, p=0.02; IVC VT r=0.74, p<0.001, respectively). Conclusions: Quantitative FDG-PET/CT imaging demonstrates that early in vivo VT inflammation predicts subsequent VWS, a driver of post-thrombotic syndrome (PTS). The overall findings strengthen: (i) the link between inflammation and PTS; (ii) the translational potential of FDG-PET inflammation to predict VWS and PTS; and (iii) the concept that statins and other anti-inflammatory therapies could reduce VWS and PTS.


PEDIATRICS ◽  
1957 ◽  
Vol 19 (6) ◽  
pp. 1139-1147
Author(s):  
Mary Allen Engle

Dr. Engle: When pulmonic stenosis occurs as an isolated congenital malformation of the heart, it usually is due to fusion of the valve cusps into a dome with a small hole in the center. In Figure 1 the pulmonary artery has been laid open so that one can see the three leaflets of the pulmonary valve are completely fused, and that there is only a small, central, pinpoint opening which permits blood to leave the right ventricle and enter the pulmonary circulation. Valvular pulmonic stenosis is much more common than subvalvular or infundibular stenosis, where the obstruction to pulmonary blood flow lies within the substance of the right ventricle. There it may be due to a diaphragm of tissue which obstructs the outflow of the right ventricle, or to an elongated narrow tunnel lined with thickened endocardium, or to a ridge of fibrous or muscular tissue just beneath the pulmonary valve. The changes in the cardiovascular system which result from obstructed pulmonary blood flow are so characteristic that they permit the ready recognition of this condition. Proximal to the constriction, these changes manifest the burden placed on the right ventricle, which enlarges and hypertrophies. On physical examination this is demonstrated by the precordial bulge and tapping impulse just to the left of the sternum, where the rib cage overlies the anterior (right) ventricle. Radiographically, both by fluoroscopy and in roentgenograms in the frontal and both oblique views, right ventricular enlargement is seen. In the electrocardiogram, the precordial leads show a pattern of right ventricular hypertrophy.


1990 ◽  
Vol 259 (6) ◽  
pp. E851-E855
Author(s):  
B. A. Meyer ◽  
S. W. Walsh ◽  
V. M. Parisi

Leukotrienes are synthesized during pregnancy and produce cardiovascular effects in adults. We hypothesized that leukotriene C4 would cause vasoconstriction in the fetus and placenta. Eight near-term, unanesthetized ovine fetuses were studied before and after infusion of 10 micrograms leukotriene C4 (LTC4) into the fetal vena cava. Cardiovascular monitoring of maternal and fetal arterial pressures and heart rates was performed. Fetal blood flows were measured by the radioactive-microsphere technique. Sustained elevations in systolic and diastolic blood pressure and decreased fetal heart rate began by 1 min and returned to baseline by 30 min. Arterial pH fell from 7.33 +/- 0.01 to 7.29 +/- 0.01 at 15 min (P less than 0.05) and to 7.29 +/- 0.01 at 30 min (P less than 0.05), with a significant increase in base deficit from 0.7 +/- 0.7 to 3.5 +/- 0.7 at 15 min (P less than 0.05) and to 2.9 +/- 1.0 at 30 min (P less than 0.05). Fetal PO2 and PCO2 were unchanged. Significant decreases in blood flow and resistance were seen in the umbilical placental circulation as well as in fetal skeletal muscle and intestine. Blood flow and resistance were unchanged in the renal and adrenal vascular beds. Fetal administration of LTC4 caused no changes in maternal cardiovascular parameters. These findings represent the first in vivo studies of the effects of a lipoxygenase metabolite on fetal-placental blood flow.


2012 ◽  
Vol 48 (5) ◽  
pp. 352-358 ◽  
Author(s):  
Pierre J. Guillaumot ◽  
Dominique Heripret ◽  
Bernard M. Bouvy ◽  
Gilbert Christiaens ◽  
Agnes Poujade ◽  
...  

An 11 yr old spayed female Labrador retriever was diagnosed with a right adrenal tumor. At surgery, adhesions to the right kidney were dissected, allowing the right kidney to be preserved. The tumor showed extensive invasion into the suprarenal vena cava. It was felt that thrombus removal via venotomy could not be performed. Instead, the vena cava was ligated caudal to the liver and cranial to the right renal vein. The neoplastic gland was then excised en bloc together with the portion of the invaded caudal vena cava. Hind limb edema had developed preoperatively and increased transiently in the first days postoperatively. The animal was discharged 6 days postoperatively with no other clinical disorders, and hind limb edema resolved over time. Histopathology identified a pheochromocytoma. The dog died 49 mo later. A neoplastic thrombus of the vena cava may require venotomy to allow thrombus removal. Occasionally, removal of the thrombus by venotomy may prove impossible. In such a situation, en bloc removal of the concerned portion of the vena cava may be performed with a good long-term outcome provided that gradual occlusion of the vena cava by the thrombus has allowed time for collateral circulation to develop.


2004 ◽  
Vol 18 (2) ◽  
pp. 232-244 ◽  
Author(s):  
Yu-Qing Zhou ◽  
F. Stuart Foster ◽  
Brian J. Nieman ◽  
Lorinda Davidson ◽  
X. Josette Chen ◽  
...  

High-frequency ultrasound biomicroscopy (UBM) has recently emerged as a high-resolution means of phenotyping genetically altered mice and has great potential to evaluate the cardiac morphology and hemodynamics of mouse mutants. However, there is no standard procedure of in vivo transthoracic cardiac imaging using UBM to comprehensively phenotype the adult mice. In this paper, the characteristic mouse thoracic anatomy is elucidated using magnetic resonance (MR) imaging on fixed mice. Besides the left parasternal and apical windows commonly used for transthoracic ultrasound cardiac imaging, a very useful right parasternal window is found. We present strategies for optimal visualization using UBM of key cardiac structures including: 1) the right atrial inflow channels such as the right superior vena cava; 2) the right ventricular inflow tract via the tricuspid orifice; 3) the right ventricular outflow tract to the main pulmonary artery; 4) the left atrial inflow channel, e.g., pulmonary vein; 5) the left ventricular inflow tract via the mitral orifice; 6) the left ventricular outflow tract to the ascending aorta; 7) the left coronary artery; and 8) the aortic arch and associated branches. Two-dimensional ultrasound images of these cardiac regions are correlated to similar sections in the three-dimensional MR data set to verify anatomical details of the in vivo UBM imaging. Dimensions of the left ventricle and ascending aorta are measured by M-mode. Flow velocities are recorded using Doppler at six representative intracardiac locations: right superior vena cava, tricuspid orifice, main pulmonary artery, pulmonary vein, mitral orifice, and ascending aorta. The methodologies and baseline measurements of inbred mice provide a useful guide for investigators applying the high-frequency ultrasound imaging to mouse cardiac phenotyping.


2006 ◽  
Vol 101 (2) ◽  
pp. 583-589 ◽  
Author(s):  
A. Cortney Henderson ◽  
David L. Levin ◽  
Susan R. Hopkins ◽  
I. Mark Olfert ◽  
Richard B. Buxton ◽  
...  

Head-down tilt has been shown to increase lung water content in animals and alter the distribution of ventilation in humans; however, its effects on the distribution of pulmonary blood flow in humans are unknown. We hypothesized that head-down tilt would increase the heterogeneity of pulmonary blood flow in humans, an effect analogous to the changes seen in the distribution of ventilation, by increasing capillary hydrostatic pressure and fluid efflux in the lung. To test this, we evaluated changes in the distribution of pulmonary blood flow in seven normal subjects before and after 1 h of 30° head-down tilt using the magnetic resonance imaging technique of arterial spin labeling. Data were acquired in triplicate before tilt and at 10-min intervals for 1 h after tilt. Pulmonary blood flow heterogeneity was quantified by the relative dispersion (standard deviation/mean) of signal intensity for all voxels within the right lung. Relative dispersion was significantly increased by 29% after tilt and remained elevated during the 1 h of measurements after tilt (0.84 ± 0.06 pretilt, 1.09 ± 0.09 calculated for all time points posttilt, P < 0.05). We speculate that the mechanism most likely responsible for our findings is that increased pulmonary capillary pressures and fluid efflux in the lung resulting from head-down tilt alters regional blood flow distribution.


Sign in / Sign up

Export Citation Format

Share Document